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Despite rapid progress in multimodal foundation models, embodied intelligence community still lacks
a unified, physically grounded foundation model that integrates perception, reasoning, and planning
within real-world spatial-temporal dynamics. We introduce RynnBrain, an open-source spatiotemporal
foundation model for embodied intelligence. RynnBrain strengthens four core capabilities in a unified
framework: comprehensive egocentric understanding, diverse spatiotemporal localization, physically
grounded reasoning, and physics-aware planning. The RynnBrain family comprises three foundation
model scales (2B, 8B, and 30B-A3B MoE) and four post-trained variants tailored for downstream
embodied tasks (i.e., RynnBrain-Nav, RynnBrain-Plan, and RynnBrain-VLA) or complex spatial reasoning
tasks (i.e., RynnBrain-CoP). In terms of extensive evaluations on 20 embodied benchmarks and 8
general vision understanding benchmarks, our RynnBrain foundation models largely outperform
existing embodied foundation models by a significant margin. The post-trained model suite further
substantiates two key potentials of the RynnBrain foundation model: (i) enabling physically grounded
reasoning and planning, and (ii) serving as a strong pretrained backbone that can be efficiently adapted
to diverse embodied tasks.
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1 Introduction

The advent of advanced robotic embodiments [95, 54] and general-purpose vision-language models (VLMs) [42,
93] has created a growing anticipation for versatile robots capable of adaptively performing diverse and complex
tasks, which is often referred to as “embodied intelligence”. A central challenge in embodied intelligence
is achieving behavioral and cognitive generalization: enabling robotic agents to transfer knowledge across
environments, tasks, and interaction regimes.

Despite the strong generalization capabilities, existing VLMs are not intrinsically grounded in physical
dynamics and thus struggle with spatio-temporal consistency, physical reasoning, and actionable planning.
Conversely, embodied models trained primarily on action-centric data often sacrifice high-level semantic
abstraction and lose the broad generalization capabilities inherited from large-scale multimodal pretraining.
We argue that progress toward general-purpose embodied intelligence requires a unified foundation model that
preserves the semantic breadth of VLMs while being explicitly structured around physical space, temporal
dynamics, and embodiment constraints. Such an embodied foundation model should serve as a high-level
cognitive “brain” for perception, reasoning, and decision-making, while remaining adaptable to downstream
control systems. This report primarily examines how to develop a generalizable foundation model for embodied
tasks and explores its generalization capacity and post-training potential in multiple dimensions.
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https://github.com/alibaba-damo-academy/RynnBrain
https://huggingface.co/collections/Alibaba-DAMO-Academy/rynnbrain
https://www.modelscope.cn/collections/DAMO_Academy/RynnBrain


Measuring from the closest 
point of each object, what is 
the distance between the 
table and the door?

2.2 meters.

What material is <object> <frame 0> 
(637, 653), (912, 956) </object> made of?

It is made of leather.

Which is higher? object0 <object> 
<frame2> (430,150),(1000,1000) </object> 
or object1 <object> <frame3> 
(0,54),(1000,750) </object> ?

Object0 is higher.

How many sofa are 
there in the video?

3.

Object Understanding

Spatial Understanding

Counting

OCR

Walk straight, and when you reach the end of 
the table turn right. Wait by the brass chairs.Navigation

→ → ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ → → → ↑ ↑ STOP 

Manipulation Task: Open the fridge to get the drink.

Open the 
<affordance> (420, 
350) </affordance>
of the <object> (405, 
14), (805, 480) 
</object> with the 
left arm.

Pick up the 
<affordance> (870, 
390) </affordance>
of <object> (851, 
358), (890, 601)  
</object> with the 
left arm.

Place the 
<object> (804, 
250), (905, 470)  
</object> on the 
<area> (330, 890)  
</area>.

If I need something to wear for warmth while sitting at the dining table, 
what should I pick up from the chair?

<object> <frame1> (805, 95),(1000,560) </object>.

Object Location

Counting Reasoning

How many drawers are near <object> <frame0> (450,405),(550,998) </object>?

Based on our inspection of the environment, the objects that fit the 
criteria are <object> <frame3> (255,355),(410,509) </object>, <object> <frame3> 
(410,225),(510,442) </object> and <object> <frame3> (510,135),(602,359) 
</object>. So the answer is 3.

General Egocentric Understanding

Grasp Pose Location

Pick up the bottle at its neck.

Trajectory Prediction Reasoning

Area Location

Trajectory Location

Affordance Location

Pick up the white tissue box on the table and place it on the wooden sofa.

The starting point of the trajectory is the object to be moved, which is the 
[white tissue box] <object> <frame 1> ((808, 708), (906, 843)) </object> located 
on the [table] <object> <frame 2> ((0, 697), (576, 997)) </object>. The 
destination is the target location for the placement action, which is the 
[wooden sofa] <object> <frame 0> ((59, 322), (862, 997)) </object>. Therefore, 
the trajectory is <trajectory><frame 3>, (381, 721), … , (32, 662)</trajectory> .

Which brand name is written 
on the white cup I keep near 
the stove while I'm cooking?

CHASE. 

Identify several points in the unoccupied 
region on the top surface of the toilet lid.
<area> <frame1> (890, 371), (890, 370) 
</area>.

Push the drawer of the 
nightstand.
<affordance> <frame2> (630, 
602) </affordance>.

Move the blue box from 
the center of the bed to 
the drawer on the right.
<trajectory> <frame2> (714, 
800), (721, 775), (735, 725), 
(999, 540) </trajectory>.

<grasp pose> (441, 339), (456, 
374), (412, 330), (403, 287) 
</grasp pose>.

What did the user add to the dish?

Salt. 

Figure1 Overview of the RynnBrain embodied foundation model. RynnBrain integrates four core capabilities: egocentric
cognition, spatio-temporal localization, physically grounded reasoning, and physics-aware planning. On the input side,
RynnBrain processes multimodal signals including images, videos, and spatio-temporal coordinates. On the output
side, it jointly produces natural language and explicit spatial grounding primitives such as points, bounding boxes, and
trajectories, enabling coherent perception, reasoning, and planning in physical environments.



Several recent efforts [92, 28, 117, 37, 5] have initiated exploration of embodied foundation models. For
instance, RoboBrain 2.0 [92] unifies understanding, localization, and planning within a single VLM to facilitate
complex embodied tasks, while Robix [28] emphasizes more natural human–robot interaction during execution.
Despite these advances, existing embodied “brain” models exhibit three key limitations. First, their egocentric
cognitive capabilities remain narrow, as training is typically confined to limited task categories or perception
modalities, restricting robustness in complex environments. Second, spatial reasoning is often grounded in
static image inputs, lacking coherent spatio-temporal representations necessary for global scene awareness and
mobile manipulation. Third, high-level reasoning and planning are frequently conducted in a purely textual
space, leading to hallucinations and inconsistencies with physical constraints.

To advance the role of embodied “brains” in complex real-world tasks, we propose RynnBrain, a spatio-temporal
foundation model explicitly grounded in physical environments. As illustrated in Figure 1, RynnBrain
demonstrates robust capabilities in four key dimensions:

1. Comprehensive egocentric understanding: RynnBrain excels in spatial comprehension, embodied question
answering, egocentric counting, egocentric OCR, etc. Notably, it also introduces fine-grained video
understanding—a capability previously overlooked by existing embodied brains.

2. Diverse spatio-temporal localization: RynnBrain can locate objects, target areas, and even predict
trajectories across its entire episodic memory, thereby endowing robots with global spatial awareness.

3. Physically grounded reasoning: Instead of conventional textual reasoning, RynnBrain employs an
interleaved reasoning strategy that alternates between textual and spatial localization, ensuring that its
reasoning traces are firmly grounded in the physical environment.

4. Physics-aware planning: To provide downstream policy models with more accurate planning instructions,
RynnBrain integrates the location information of affordance, areas, and objects directly into its planning
outputs. Consequently, even highly intricate and fine-grained tasks can be effectively addressed within
our hierarchical system architecture.

We build RynnBrain on top of Qwen3-VL [6]. To accommodate varying computational resource constraints,
we release two dense variants (2B and 8B) and one mixture-of-experts (MoE) model (30B-A3B). Given com-
parable inference latency, RynnBrain surpasses all existing embodied brain models in terms of comprehension,
localization, and planning capabilities. Beyond foundational pretraining, we explore four post-training direc-
tions: RynnBrain-CoP, RynnBrain-Nav, RynnBrain-Plan, and RynnBrain-VLA. RynnBrain-CoP introduces
chain-of-point reasoning, an interleaved reasoning mechanism that alternates between textual reasoning and
spatial grounding, enabling physically grounded prediction. This design yields superior performance on tasks
requiring precise localization, counting, and other embodied perceptual reasoning capabilities. RynnBrain-Nav
demonstrates that adopting RynnBrain as a backbone substantially elevates performance ceilings across
various embodied tasks. RynnBrain-Plan validates the effectiveness of the fine-grained manipulation-planning
paradigm that alternates between textual reasoning and localization. Finally, RynnBrain-VLA shows that
embodiment-agnostic foundational pretraining under the RynnBrain paradigm benefits downstream VLA
models that directly predict low-level actions.

A fundamental bottleneck for embodied foundation models is the scarcity of high-quality training data. We
observe that more realistic and diverse data can substantially enrich and deepen RynnBrain’s capabilities in
real-world scenarios. To this end, we design dedicated data pipelines tailored to key competencies, including
OCR, spatio-temporal localization, action planning, and physically grounded reasoning. Importantly, our
data construction framework strategically leverages the priors of pretrained foundation models, introducing
human supervision only at critical decision points. This human–model collaborative data flywheel improves
annotation efficiency and data quality under constrained labeling budgets, enabling the training corpus to
scale over 20 million samples.

We extensively evaluate the proposed RynnBrain models in multiple dimensions. Also, recognizing that existing
open-source benchmarks inadequately assess fine-grained understanding and spatio-temporal localization, we
introduce RynnBrain-Bench, a curated benchmark with carefully filtered and manually verified annotations
to ensure robustness and reliability. Across 28 benchmarks, RynnBrain demonstrates strong egocentric
cognition, including spatial and temporal understanding, OCR, and robot question answering, as well as



diverse localization capabilities spanning objects, areas, affordances, and trajectories. Meanwhile, it retains
competitive general-purpose visual understanding and instruction-following capabilities.

We further evaluate four post-trained variants across distinct embodied domains: spatio-temporal reasoning
(RynnBrain-CoP), vision-and-language navigation (RynnBrain-Nav), manipulation planning (RynnBrain-
Plan), and vision-language-action modeling (RynnBrain-VLA). The interleaved grounding–reasoning paradigm
of RynnBrain-CoP improves performance on complex spatio-temporal tasks (e.g., trajectory prediction) by
approximately 7%. On the R2R [3] and RxR [49] benchmarks, RynnBrain-Nav achieves state-of-the-art results
and consistently surpasses Qwen3-VL-based counterparts across model scales. For manipulation planning,
RynnBrain-Plan adopts two online evaluation protocols, VLMs-UMI and VLMs-VLA. VLMs-UMI directly
measures the accuracy and efficiency of high-level planning, while The VLMs-VLA framework evaluates how
RynnBrain’s physics-aware, spatially explicit plans enhance downstream VLA execution, thereby strengthening
the robustness of the hierarchical embodied architecture. In high-complexity grasping scenarios, RynnBrain-
VLA consistently outperforms models fine-tuned from π0.5 [9], indicating that strong scene understanding and
embodied grounding form a critical foundation for generalizable VLA systems.

All code, model checkpoints, and benchmarks are publicly released to facilitate reproducibility and further
research. We envision RynnBrain as a foundational step toward physically grounded general intelligence, where
unified spatio-temporal reasoning and physics-aware planning enable embodied agents to operate robustly
across diverse real-world settings.

2 Overview

2.1 Model Architecture

An overview of the RynnBrain architecture is shown in Figure 2. RynnBrain adopts a decoder-only vi-
sion–language architecture following the design principles of Qwen3-VL [6]. It comprises a vision encoder,
a vision-language projector, and a large language model (LLM) backbone initialized from Qwen3-VL vari-
ants (Qwen3-VL-2B/8B/30B-A3B-Instruct). In addition, we also employ the techniques of DeepStack [68]
and Interleaved MRoPE [41] to better integrate multimodal information.

2.2 Infrastructure

As a general-purpose embodied foundation model, the training data of RynnBrain consists of multiple
modalities—including video, image, and text—across a wide range of tasks. These tasks range from short-
response tasks, such as localization and spatial perception, to long-form tasks involving detailed multimodal
captioning and complex reasoning. This inherent task diversity results in sequence length distributions
characterized by high variance and a pronounced long-tail profile. Since computational complexity scales with
sequence length, a naive distribution of samples across a data parallel (DP) training environment induces a
severe straggler effect, where workers assigned heavy workloads become throughput bottlenecks.

To mitigate this, we implement an online load-balancing pipeline. Specifically, we first estimate the sequence
lengths of all samples according to pre-computed image sizes and the numbers of text tokens. During the batch
sampling phase of the training process, rather than assigning an equal number of samples to each DP worker,
we aggregate all samples across the DP group and redistribute them based on the objective of minimizing
the maximum cumulative sequence length within each DP worker. To solve this redistribution efficiently, we
adopt a greedy approximation algorithm that prioritizes longer sequences: we initialize buffers equal to the
DP world size, sort sequences in descending order of length, and iteratively assign each to the buffer with the
smallest current total length. This process is executed during data prefetching; under the Single Program,
Multiple Data (SPMD) framework, stable sorting ensures that global data distribution remains consistent
across all workers. This fast and dynamic allocation prevents training stalls while maintaining flexibility,
eliminating the need for costly data pre-processing when hyperparameters or datasets change.

To maintain convergence stability after sample redistribution, the global number of tokens is required under
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Figure 2 Overview of the RynnBrain architecture. RynnBrain processes omni vision inputs, including single view
images, multi view images, and videos, together with language instructions. A shared dense or mixture of experts
decoder generates aligned multimodal outputs, including text, regions, trajectories, and pointing signals. This unified
output space supports egocentric understanding, spatiotemporal grounding, physically grounded reasoning, and fine
grained action planning in real world environments.

the traditional per-token loss formulation:

L =
1∑n

i=1

∑bi
j=1 sij

n∑
i=1

bi∑
j=1

sij∑
k=1

lijk, (1)

where n is the DP world size, bi is the local batch size on i-th worker, sij is the sequence length of the
j-th sequence, and lijk is the per-token loss. However, calculating the global token count (the denominator)
requires an additional all-gather operation across the DP group, which introduces synchronization overhead
and reduces training efficiency. To circumvent this, we adopt a per-sample loss reduction strategy:

L =
1

b

n∑
i=1

bi∑
j=1

1

sij

sij∑
k=1

lijk, (2)

where b is the global batch size. Since b is a constant known to each worker, this strategy eliminates the
need for extra communication and improves efficiency. The holistic approach doubles training efficiency while
preserving model stability and convergence properties.

To accommodate the models within the memory constraints of a single GPU, we employ the ZeRO-1 opti-
mizer [77] and per-block gradient checkpointing for training RynnBrain-2B and RynnBrain-8B. Considering the
large memory consumption of the logits, we selectively filter out tokens that do not require loss calculation—such
as multimodal tokens—during the forward pass of the output head. For the larger RynnBrain-30B-A3B model,
we employ the ZeRO-2 optimizer [77] and expert parallel (EP) with a world size of 2 to partition and fit the
model in a single GPU. To optimize computational throughput, we implement the grouped linear operation
for MoE layers with packed inputs and weights based on the kernel templates from NVIDIA CUTLASS 1.
Cross-GPU token dispatching for EP is facilitated via DeepEP [57]. For broad accessibility and extensibility,

1https://github.com/NVIDIA/cutlass

https://github.com/NVIDIA/cutlass


our training and inference frameworks are basedon the HuggingFace Transformers [101] library and have been
released as open-source.

3 Physics-Aware Spatio-temporal Pretraining

Enabling generalizable robots to interact naturally with real-world environments requires two fundamental
capabilities: (1) Spatio-temporal Memory: Through historical visual memory, the robot must establish
multi-dimensional representations encompassing space, location, events, trajectories, and e.g., thereby enabling
adaptation to complex and dynamic environments. (2) Physical World Grounding: All robotic cognitive
processes must be fundamentally rooted in the objective reality of the physical world. This chapter primarily
introduces the pretraining methodology of RynnBrain, which is explicitly guided by these two insights.

3.1 Training Recipe

To equip RynnBrain with spatio-temporal memory and physical grounding, we adopt a unified pretraining
framework that maps multimodal inputs into a shared semantic representation space. The training recipe
is structured around two core components: a unified input–output representation and a physics-aware
optimization strategy.

Unified Spatio-temporal Representation. To support spatio-temporal memory, we treat images and videos as
a unified visual modality. Formally, a visual input V is represented as a sequence of frames {It}Tt=1, where
T = 1 for static images and T > 1 for videos. For videos, frames are uniformly sampled to preserve temporal
continuity. Each frame is encoded into visual tokens and augmented with temporal positional embeddings
to encode frame order. This representation enables RynnBrain to capture temporal dependencies, motion
patterns, and trajectory dynamics across extended visual sequences.

PhysicallyGroundedOutputSpace. To ensure physical world grounding, we explicitly structure the output space
to bridge high-level reasoning and low-level execution. Unlike conventional vision–language models that treat
spatial quantities as free-form text, we introduce discrete coordinate tokens to represent physical locations.
All spatial entities, including bounding boxes B, points P , and trajectory waypoints T , are normalized to the
range [0, 1000] and encoded as integer tokens. This discretization converts continuous spatial prediction into a
classification problem, allowing the model to generate precise and physically meaningful spatial outputs using
the same autoregressive mechanism as language generation.

Optimization. RynnBrain is trained end to end using a standard next-token prediction objective. The training
loss is defined as:

L = −
L∑

i=1

logP (yi | y<i,V,Θ) , (3)

where V denotes the visual input, y is the mixed sequence of textual and coordinate tokens, and Θ represents
the model parameters. Optimization hyperparameters are adjusted across model scales based on pilot
experiments conducted on a representative subset of the pretraining data. Detailed training configurations
are reported in Table 1.

Table 1 Hyperparameters of the pretraining stage for RynnBrain model series.
Parameter RynnBrain-2B RynnBrain-8B RynnBrain-30B-A3B
Base Model Qwen3-VL-2B-Instruct Qwen3-VL-8B-Instruct Qwen3-VL-30B-A3B-Instruct
Optimizer AdamW AdamW AdamW
Learning Rate 5e−6 2e−6 2e−6

Learning Rate Vision 1e−6 2e−6 2e−6

Global Batch Size 512 1024 1024
Warmup Ratio 0.03 0.03 0.03



Table 2 Pretraining data mixture statistics for RynnBrain
Category Sub-Task Data Sources Samples

(M)

General MLLM General

LLaVA-OV-SI [52], LLaVA-Video [118],
ShareGPT-4o-video [15], VideoGPT-plus [61],
FineVideo [29], CinePile [79], ActivityNet [10],
YouCook2 [123], LLaVA-SFT [58]

4.80

Cognition

Object Understanding RynnBrain-Object, RefCOCO [110], Google
Refexp [64], Osprey-724K [112], DAM [55],
VideoRefer-700k [113]

1.10

Spatial Understanding Sensenova-SI-800K [12], VSI-590k [106],
VLM-3R [27], RynnBrain-Spatial

2.50

Counting RynnBrain-Counting, Molmo2 [20] 0.30
OCR RynnBrain-OCR 1.00
Egocentric Task
Understanding

EgoRe-5M [73], Egotaskqa [44], Env-QA [1],
QAEgo4d [34], RoboVQA [85], Robo2vlm [13],
ShareRobot [43]

2.77

Localization

Object Localization ADE20K [121], COCOStuff [11], Mapillary [70],
PACO-LVIS [76], PASCAL-Part [16], VG [48]
RoboAfford-Object [36], RynnBrain-Grounding

1.20

Area Localization RefSpatial [122], RoboAfford-Area [36],
Molmo2 [20], RynnBrain-Area

3.37

Affordance Localization RynnBrain-Affordance, RoboAfford-Affordance [36] 1.13
Trajectory Prediction RynnBrain-Trajectory, FSD [111] 0.56
Grasp Pose Prediction Grasp-Anything [96] 1.00

Planning
Manipulation AgibotWorld [22], Open X-Embodiment [21],

RynnBrain-Planning
0.16

Total 19.89

3.2 Pretraining Data

Table 2 summarizes the data sources and corresponding data volumes used for pretraining RynnBrain. Below,
we describe each dataset grouped by category.

3.2.1 General MLLMData

To retain broad multimodal understanding, we construct a general-purpose MLLM pretraining corpus
spanning both images and videos across diverse domains. The corpus aggregates publicly available datasets,
including LLaVA-OV-SI [52], LLaVA-Video [118], ShareGPT-4o-video [15], VideoGPT-plus [61], FineVideo [29],
CinePile [79], ActivityNet [10], YouCook2 [123], LLaVA-SFT [58], and VideoLLaMA 3 [114]. Together, these
datasets support open-vocabulary object recognition, conversational video understanding, long-horizon
temporal reasoning, and image–text supervision. In total, the corpus comprises 4.8M samples.

3.2.2 Multi-Dimensional Cognition Data

Object Understanding. The object understanding dataset is designed to enhance fine-grained object recognition
and object-centric reasoning. Each sample focuses on a specific object annotated with a bounding box in a
single frame, formatted as <object> <frame n>: (coordinates) </object>, with questions conditioned
on the indicated object. The dataset covers object attributes such as category, color, shape, function, spatial
position, and related properties.

We combine publicly available datasets [110, 64, 112, 55, 113] with self-collected egocentric data, yielding
over 1.1M samples. For the egocentric subset, we construct an object-centric QA generation pipeline on
indoor videos. Objects are first identified using Qwen2.5-VL [7], detected in key frames with Grounding
DINO 1.5 [81], and segmented and tracked using SAM2 [78]. To reduce redundancy, we limit each video to at



most two instances per object category. Object-centric QA pairs are then generated using Qwen2.5-VL and
manually filtered for quality, resulting in 712K high-quality QA samples.

Spatial Understanding. Spatial reasoning is critical for embodied tasks such as navigation and manipulation,
yet remains a weakness of many existing VLMs. To address this limitation, we curate over 2.5M spatial
instruction samples spanning two categories: general spatial understanding and fine-grained object-centric
spatial reasoning.

General spatial understanding data are sourced from publicly available datasets, including Sensenova-SI-
800K [12], VLM-3R [27], and VSI-590K [106]. For fine-grained spatial annotations, we process self-collected
indoor images and videos using MASt3R-SLAM [69], which reconstructs 3D point clouds and estimates camera
extrinsics from RGB video. Instance-level segmentations are projected into the reconstructed 3D space, and
the point cloud is realigned using RANSAC [31] to detect the ground plane and enforce a gravity-aligned
world coordinate system.

Based on these calibrated 3D scenes, we generate spatial QA pairs requiring reasoning about metric distances,
relative positions, heights, and other 3D relationships. QA generation follows a template-based scheme, where
missing attributes are computed directly from the underlying geometry. This process yields 855K video-based
and 272K image-based spatial QA samples.

Counting. The counting dataset is designed to improve robust estimation of object quantities in complex visual
scenes. We combine publicly available data with egocentric indoor videos. The public component consists of
the Molmo2 counting subset [20], comprising 222K samples with diverse scenes and reliable annotations. To
incorporate embodied perspectives, we further curate 42K counting QA pairs from self-collected egocentric
videos. All annotations are manually verified to ensure accuracy and consistency.

OCR. The OCR dataset equips the model with scene text recognition and grounding capabilities essential
for text-rich embodied environments. We construct approximately 1M OCR QA samples from egocentric
videos sourced from Ego4D [34], Charades-Ego [88], and EPIC-KITCHENS [23]. Scene text is detected using
GoMatching [38, 39], and videos are segmented based on text appearance patterns into clips of 3 to 15 seconds,
yielding 85,324 text-containing segments.

For each segment, human annotators label the first appearance frame, the clearest frame, text transcription, and
bounding polygons. QA pairs are generated using two complementary strategies: (i) GPT-5.2 [71] produces
goal-oriented, first-person questions grounded in practical text understanding, yielding 256K contextual
QA samples; (ii) template-based generation produces structured questions covering text reading, temporal
localization, verification, and multiple-choice recognition, yielding 722K samples. GPT-generated questions
are filtered to ensure visual perception is required.

The OCR dataset is provided in two formats: normal video QA (893K samples), where the model predicts
textual answers from video input, and area prediction QA (85K samples), where the model outputs frame
indices and normalized bounding coordinates.

EgocentricTaskUnderstanding To support broad egocentric task comprehension, we construct an egocentric task
understanding dataset comprising 2.77M video–text pairs. The dataset aggregates publicly available resources,
including Env-QA [1], EgoTaskQA [44], RoboVQA [85], EgoRe-5M [73], QAEgo4D [72], Robo2VLM [13],
and ShareRobot [43]. Videos shorter than 3 seconds are excluded to ensure sufficient temporal context for
task-level reasoning.

3.2.3 Spatio-Temporal Location Data

Object Location. Object localization enables the model to interpret language instructions and identify target
objects in images and videos. Each sample is represented as (V, Q,B, t), where V = {It}Tt=1 denotes a sequence
of T frames (T = 1 for static images), Q is a textual query describing the target object, B = {(x0, y0, x1, y1)}
is the bounding box of the target with normalized coordinates in [0, 1000], and t denotes the key frame where
the object is most clearly observed.



We aggregate 900K samples from publicly available grounding datasets, including ADE20K [121], COCO [56],
Mapillary [70], PACO-LVIS [76], PASCAL-Part [16], VG [48], and RoboAfford++ [36]. To strengthen
egocentric localization, we further construct 300K egocentric samples using the same segmentation pipeline as
object understanding. Referring expressions are generated using Qwen3 [104], including simple expressions
based on category or position and situational expressions that require task-level inference. All samples are
manually filtered for quality.

AreaLocation. Area localization equips the model to identify non-object regions, such as surfaces, empty spaces,
or functional areas, in images and videos. Each sample is represented as (V, Q,P, t), where P = {(xi, yi)}ni=1

denotes a set of normalized points indicating the target area, and t is the keyframe index.

The dataset is constructed from multiple sources. We annotate 6K egocentric house-touring video segments
using LLM–generated instructions with human-selected point annotations. To enhance temporal coverage, we
incorporate 222K video samples from Molmo2-VideoPoint [20]. For static scenes, we curate 448K image–area
samples from indoor images using a similar pipeline. Additionally, we include 2.2M image-based samples from
RoboAfford++ [36] and RefSpatial [122] to increase domain diversity.

Affordance Location. Affordance localization focuses on identifying actionable points, such as handles, buttons,
or interaction hotspots, on objects or surfaces. Each sample is represented as (V, Q, p, t), where p = (x, y) is
a normalized affordance point and t denotes the key frame index where the affordance is most relevant..

We follow a construction pipeline similar to area localization. For spatiotemporal data, we annotate 6K video
segments with LLM–generated instructions and human-labeled affordance points. For static images, we derive
476K affordance samples from 500K indoor images. To improve generalization, we further include 260K
affordance samples from RoboAfford++ [36], focusing on actionable interactions.

Trajectory Location Trajectory localization trains the model to predict plausible two-dimensional manipulation
trajectories for object interaction tasks. Each sample is represented as (V, Q, T , ts), where T = {(xi, yi)}mi=1

is an ordered set of up to 10 normalized trajectory points, and ts denotes the starting frame.

We construct 6K spatiotemporal samples with LLM–generated instructions and human-annotated trajectories,
emphasizing cross-frame reasoning. For static images, we generate 507K image–trajectory samples from indoor
scenes. To further diversify manipulation scenarios, we include 13K trajectory samples from FSD [111].

Grasp Pose Location The grasp pose location dataset equips the model with the ability to predict precise
robotic grasp poses for target objects. Each sample is represented as (I,Q,G), where I denotes a single RGB
image, Q is a textual query specifying the target object and grasping task, and G = {(xi, yi)}4i=1 denotes four
ordered corner points defining an oriented grasp rectangle.

We construct this dataset from Grasp-Anything [96], which provides grasp annotations for everyday objects in
tabletop scenes using oriented rectangles parameterized by center (cx, cy), dimensions (w, h), and rotation angle
θ. We process approximately 995K images at 416×416 resolution, each containing one or more annotated grasp
candidates. For each object, we select the highest-scoring grasp and convert the parameterized representation
into four corner points via rotation. This representation explicitly captures grasp orientation and gripper
alignment, supporting spatially precise manipulation planning.

To promote linguistic diversity, we generate instruction prompts using a weighted template strategy: 40%
object-centric prompts, 30% scene-aware prompts incorporating scene descriptions, and 30% task-oriented
prompts emphasizing manipulation intent. Grasp pose outputs are expressed using multiple concise response
templates to improve robustness to varied linguistic formulations.

Following this pipeline, we construct a static-image grasp pose dataset comprising 1.3M training samples
derived from 945K images, with an average of 1.44 samples per image. This dataset enables RynnBrain to learn
orientation-aware and spatially grounded grasp pose prediction, a key capability for robotic manipulation.

3.2.4 Physics-Aware Planning Data

To support precise manipulation planning, we design a structured planning data schema. Following Hi
Robot [87], we adopt atomic actions as the minimal units of planning. Long-horizon tasks are decomposed



into temporally ordered sub-tasks using an in-house model and subsequently verified by human annotators.

To enable fine-grained spatial grounding, each sub-task is annotated with a unified grounding schema that
includes target object bounding boxes, placement area points, and affordance points. Formally, each training
sample is represented as (V, Q,M), where V = {It}Tt=1 denotes the visual context preceding the current
step, Q is a high-level task instruction (e.g., “Please help me tidy up the sink.”), andM denotes the current
sub-task plan, expressed as a mixed sequence of textual tokens and grounding annotations (bounding boxes B,
area points P, and affordance point p).

We incorporate publicly available datasets, including AgibotWorld Alpha [22] and Open X-Embodiment [21],
formatted as single-turn planning dialogues. To strengthen physical grounding, we further augment these
data with spatial annotations on randomly sampled frames. This design enables RynnBrain to integrate
object, region, and affordance information directly into planning outputs, providing downstream manipulation
policies with precise and physically grounded guidance.

4 Physically Grounded Chain-of-Point Reasoning

Most existing multimodal reasoning models [30, 59, 51] rely on purely textual reasoning paradigms. Although
several approaches [60, 120, 33, 108] incorporate auxiliary tools such as region zooming to alleviate visual
recognition challenges, their reasoning processes remain largely detached from physical spatial structure,
limiting generalization beyond narrowly defined tasks. Alternative methods that explore visual imagination
during reasoning [35, 103, 26] further suffer from hallucinated visual content, undermining physical consistency.

For embodied agents operating in real-world environments, reasoning must be grounded in observable physical
evidence. To this end, we introduce Chain-of-Point (CoP) reasoning in RynnBrain, an interleaved reasoning
paradigm that integrates explicit spatial grounding with textual inference over egocentric video streams. By
anchoring intermediate reasoning steps to concrete spatial references, CoP bridges language-based cognition
and physical perception, enabling reasoning that remains consistent with the underlying environment. This
section presents the design and explorations of CoP reasoning for physically grounded embodied intelligence.

4.1 Cold-Start Supervised Fine-Tuning

4.1.1 Training Recipe

The training of the CoP reasoning model, i.e., RynnBrain-CoP, begins with the pretrained RynnBrain
model, which establishes a strong foundation in general embodied understanding. We perform full-parameter
supervised fine-tuning using the AdamW optimizer with a cosine learning rate schedule. We set the peak
learning rate to 1× 10−5 for the language model and projector, and 2× 10−6 for the vision encoder, with a
3% warmup period. The model is trained for 1 epoch with a global batch size of 128. To effectively process
long-horizon egocentric videos, we sample frames at 2 FPS (up to 2048 frames) and set the maximum context
length to 16,384 tokens. We utilize DeepSpeed ZeRO-1 to optimize memory efficiency during training.

4.1.2 Data

To develop the model’s CoP reasoning capability, we construct a specialized dataset that explicitly interleaves
textual reasoning with visual grounding. This process is based on the core spatio-temporal location datasets
(Area, Affordance, and Trajectory Location). Each sample is enriched with a “Thinking” field that bridges
high-level task understanding with low-level spatial localization.

The data generation follows a structured pipeline: First, given the original task instruction and video frames,
we use Qwen3-VL-235B to pre-generate a step-by-step textual reasoning chain. This chain includes key
reasoning steps and explicitly marks potential entities (e.g., objects or areas) using square brackets (e.g.,
[white flower-patterned wallpaper]). These entities are candidates for visual grounding. Next, an in-house
model is employed to classify each marked entity as either “area” or “object” based on the textual context.
Finally, human annotators review the reasoning chain and entity classifications. For each identified entity,
they select the most relevant and clear frame from the video sequence and perform precise annotation:



for entities classified as “area”, they annotate a set of representative points; for those classified as “object”,
they annotate a 2D bounding box. The grounding results are then inserted back into the reasoning text
in the structured format <object/area> <frame n>: ...; (coordinates) </object/area>, creating a
seamless interleaving of textual reasoning and spatial grounding.

This process results in a CoT-style dataset where the model’s internal thinking process is not merely abstract,
but is continually anchored to specific visual evidence in the physical space. Formally, a sample extends
the base tuple to (V,Q,Pfinal, ts, R), where R represents this interleaved reasoning chain. This dataset
is fundamental for training RynnBrain-CoP, enabling RynnBrain to perform transparent, grounded, and
hallucination-resistant reasoning essential for reliable operation in embodied scenarios.

4.2 Reinforcement Learning

4.2.1 Training Recipe

We employ Group Relative Policy Optimization (GRPO) [86] to align the model with physically grounded
reasoning tasks. Unlike standard PPO [84] which requires a value function (critic) to estimate the advantages,
GRPO estimates the baseline from the group scores of multiple sampled outputs generated from the same
prompt. This significantly reduces memory usage and training complexity.

Formally, for each query q, we sample a group of G outputs {o1, o2, ..., oG} from the old policy πθold . The
optimization objective is defined as follows:

JGRPO(θ) = E

[
1

G

G∑
i=1

(min (ρiAi, clip(ρi, 1− ϵ, 1 + ϵ)Ai)− βDKL(πθ(oi|q)||πref(oi|q)))

]
(4)

where ρi =
πθ(oi|q)

πθold
(oi|q) is the importance sampling ratio, and β is the coefficient for the KL divergence penalty

with respect to the reference model πref. The advantage Ai for each output is computed by normalizing the
rewards within the group:

Ai =
ri −mean({r1, ..., rG})

std({r1, ..., rG}) + ϵ
(5)

The training is initialized from our cold-start SFT model. We utilize the SGLang [119] inference engine for
efficient rollout generation with a group size of G = 5. The training runs for 10 epochs with a batch size of
128. We optimize the policy using a cosine learning rate schedule starting at 2× 10−6 with a 3% warmup.
To ensure stability, we set the clipping range ϵ to [0.2, 0.28] and the KL coefficient β = 0.02. The maximum
sequence length is set to 16,384 tokens to accommodate long-context egocentric video reasoning.

4.2.2 Reward Design

We design task-specific rule-based reward functions to strictly anchor the model’s reasoning in the physical
world. All spatial coordinates are normalized to the unit interval [0, 1] prior to reward computation.

Trajectory. The trajectory reward evaluates the shape and sequential alignment of the predicted path. First,
both the predicted sequence P = (p1, . . . , pM ) and the ground truth sequence G = (g1, . . . , gN ) are resampled
to have the same number of points uniformly spaced by arc length. We then calculate the Discrete Fréchet
Distance (DFD), defined recursively. Let c(i, j) be the coupling distance between prefixes p1:i and g1:j :

c(i, j) = max
(
∥pi − gj∥2,min

(
c(i− 1, j), c(i, j − 1), c(i− 1, j − 1)

))
(6)

with c(0, 0) = ∥p1 − g1∥2. The final distance is DF = c(M,N). The reward decays exponentially with this
distance:

rtraj = exp(−λtraj ·DF ) (7)

Affordance. For affordance, we measure the set similarity between predicted interaction points P and ground
truth points G using the Bidirectional Mean Euclidean Distance, a variant of the Chamfer distance. This



metric jointly captures precision, by penalizing invalid predictions, and recall, by measuring coverage of all
annotated affordance regions:

Dbidir(P,G) =
1

2

 1

|P|
∑
p∈P

min
g∈G
∥p− g∥2 +

1

|G|
∑
g∈G

min
p∈P
∥p− g∥2

 (8)

The reward is defined as raff = exp(−λaff ·Dbidir).

Area. For area identification, we treat the task as a point-retrieval problem within a valid polygon. Let SG
denote the geometric region defined by the ground truth polygon. The reward is the strict accuracy of the
generated points P:

rarea =
1

|P|
∑
p∈P

I(p ∈ SG) (9)

where I(·) is the indicator function.

4.2.3 Reinforcement Learning Data

To support efficient and high-quality policy exploration, we construct a curated reinforcement learning dataset
based on the spatiotemporal localization data used during pretraining, covering area, affordance, and trajectory
tasks. These tasks provide essential supervision for visual evidence localization and physics-aware reasoning.

We apply a difficulty-aware filtering strategy to remove trivial samples that do not require grounded reasoning,
as well as excessively noisy or ambiguous cases. Each candidate sample is scored by a pretrained SFT model
using the evaluation metrics described in Section 6.1, and only samples of intermediate difficulty (scores
between 40 and 80) are retained. To further improve temporal localization, we additionally include a subset
of failure cases in which the SFT model incorrectly selects key frames.

This refinement process yields a high-quality dataset of 30K training samples. By constraining exploration
within a structured and physically grounded regime, the dataset reduces hallucinations and promotes more
reliable reasoning during reinforcement learning.

5 Post-training for Embodied Tasks

5.1 Vision-Language Navigation

The RynnBrain foundation model is pretrained to enhance its general understanding capabilities. To validate
the benefits of this pretraining for the task of Vision-Language Navigation (VLN), we subsequently fine-tune
the model on a VLN dataset. The fine-tuned RynnBrain model, namely RynnBrain-Nav is then deployed as
an agent to perform navigation tasks.

Problem Formulation. In the VLN task, an embodied agent is tasked with interpreting a natural language
instruction Q. At time t, based on a sequence of visual observations O = {o0, o1, . . . , ot} and language
instruction Q, the agent must generate a corresponding action at to follow the instruction and reach the
target destination. Each observation oi ∈ R3×H×W is an RGB image from the agent’s current perspective.
The discrete action space is defined as A = {↑,←,→, STOP}, representing the low-level movements of moving
forward by 30 centimeters, turning left or right by 15 degrees, and halting the episode, respectively.

Data Formulation. We adopt a multi-turn conversational format, which is efficient for both training and
inference. Following the methodology of StreamVLN [100], the training data is organized as a sequence of
observation-action pairs, di = (oi, ai). The training objective is to predict the next action ai based on current
visual observation oi and the preceding conversational history. This formulates each VLN trajectory into an
interleaved image-text sequence, represented as:

{o0, a0, o1, a1, . . . , on, an} (10)

Data Collection. We curated a large-scale, navigation-specific training dataset using the Habitat simulator [83]
and using the ground truth action to generate the image-text interleaved VLN dataset. The primary component



consists of 450K video clips generated from R2R [3], R2R-EnvDrop [91], and RxR [49] trajectories across 60
Matterport3D (MP3D) [75] environments. To enhance scene diversity and improve generalization, this dataset
was augmented with an additional 300K samples from a subset of the ScaleVLN [99] dataset. We further
implement multi-turn DAgger [82] to further collect the data to improve the performance of the model.

Fine-tuning Settings. We perform full-parameter supervised fine-tuning using the AdamW optimizer with a
cosine learning rate schedule. We set the peak learning rate to 2× 10−5 for the language model and projector,
and 2 × 10−6 for the vision encoder, with a 3% warmup period. The model is trained for 1 epoch with a
global batch size of 256. To effectively process long-horizon egocentric videos, we sample frames at 2 FPS (up
to 2048 frames) and set the maximum context length to 16,384 tokens. We utilize DeepSpeed ZeRO-1 to
optimize memory efficiency during training.

5.2 Manipulation Planning

Since the pretraining corpus incorporates planning-centric data, the foundation model already possesses
inherent planning capabilities. However, adapting this capability to complex, long-horizon manipulation tasks
requires the model to maintain effective memory. To address this issue, we utilize a tiny in-house dataset
formatted as multi-turn dialogues, where the interaction history functions as an explicit memory buffer to
preserve historical reasoning results. This structure enables the model to bridge individual planning steps into
a coherent long-horizon strategy. Crucially, to align with this sequential inference, grounding annotations
were applied exclusively to the final frame of each dialogue turn, ensuring current decisions are conditioned
on both the immediate observation and the accumulated memory. Empirically, we find that this approach
is highly data-efficient: fine-tuning with only a few hundred samples is sufficient to endow the model with
robust long-horizon planning and generalization capabilities. Further details and quantitative evaluations are
provided in Section 6.

5.3 VLA

Model Architecture. To bridge the gap between planning and physical execution, we propose RynnBrain-
VLA, which translates fine-grained plans into executable robot actions. We build RynnBrain-VLA upon
RynnBrain-2B to utilize the large-scale pretraining on fine-grained object references and precise spatial

RynnBrain-2B

··· ··· Projection

Projection

Instruction Observation State Noisy Action

Action

Denoising

Target Object

··· ···

Prefix KV Cache

Figure 3 RynnBrain-VLA architecture.

localization while maintaining low inference latency. The
overall model architecture is shown in Figure 3. Gen-
erally, we adopt a flow matching framework to predict
an action chunk [8] at each step. The VLM backbone
is served as a single-stream Diffusion Transformer (DiT)
taking a single packed sequence containing the condi-
tion and the noisy actions as input. To make the VLM
compatible with this framework, we add three linear
projections to align the dimension of the input noises,
input timestamp embeddings, and the output actions to
the VLM hidden size. To preserve the VLM’s inherent
instruction-following capabilities, we utilize its native
conversation format for organizing the input sequence.
Consistent with the planning model, pointing informa-
tion is passed in a text-based format, with the task’s
initial frame prepended to the input sequence.



<|im_start|>user
INSTRUCTION:
<start_frame>
Pick the <affordance> (x,y) </affordance> of the <object> (x0,y0),(x1,y1) </object>
OBSERVATION:
<camera_1><camera_2><camera_3>
STATE:
<state>
What action should the robot take ?<|im_end|>
<|im_start|>assistant
<action>

Following π0 [8], actions are positioned at the end of the sequence to enable the KV cache during inference.

Fine-tuning. To equip the model with robotic control capabilities, we curated a dataset comprising six
pick-and-place tasks involving three distinct objects, collected via manual teleoperation on a Franka Emika
arm. Following data collection, each episode was annotated with its target object or placement location and
aligned with the output format of the planning model. We then fine-tuned the RynnBrain-2B model on this
dataset for 60k steps, using a learning rate of 2e-5 and a batch size of 32. All images were proportionally
resized to a short-side dimension of 384 pixels. Experimental results show that, by leveraging RynnBrain’s
embodied understanding and precise localization, this simple adaptation achieves accurate interpretation of
point-based instructions and reliable grasping.

6 Evaluation

6.1 RynnBrain-Bench

For embodied brains operating in physical reality, the fine-grained spatio-temporal understanding across
the entire episodic memory is essential for performing intricate embodied tasks. While existing benchmarks
primarily focus on either static scene understanding with text-referenced objects [62, 25] or spatial pointing
tasks with single-frame input [43], they fall short of adequately evaluating models’ capabilities in this domain.
We introduce RynnBrain-Bench, a high-dimensional evaluation suite designed to holistically benchmark the
cognition and localization capabilities of embodied understanding models in complex household environ-
ments. Advancing beyond existing benchmarks, RynnBrain-Bench features a unique emphasis on fine-grained
understanding and precise spatio-temporal localization within episodic video sequences.

6.1.1 Overview

We present an overview framework of RynnBrain-Bench in Figure 4, highlighting its core dimensions and
sample tasks. RynnBrain-Bench systematically measures spatio-temporal embodied understanding across four
foundational pillars: Object Cognition, Spatial Cognition, Grounding, and Pointing. Covering 21 specialized
sub-capabilities ranging from detailed object attributes (e.g., color, shape) to affordance points prediction,
the benchmark comprises 3,616 video clips consisting of 577,998 frames, and 12,000 meticulously curated
open-ended questions for comprehensive evaluation. Our data construction starts from the self-collected
egocentric indoor videos and object-centric Q/A pairs initially generated with foundation model priors,
followed by the rigorous human-in-the-loop annotation pipeline detailed in Section 3.2. The annotated data is
cross-validated by human annotators across multiple rounds to ensure its correctness and high quality. We
perform internal data balancing across sub-capabilities within each foundational dimension to ensure fairness
and objectivity for evaluation. To ensure high fidelity, questions related to objects are further balanced against
real-world object distributions for better authenticity.

6.1.2 Evaluation Dimensions

RynnBrain-Bench defines a new form of spatio-temporal evaluation paradigm, requiring models to perform
instruction-guided cognition and localization anchored to precise spatial and temporal coordinates.



Object Cognition challenges models with fine-grained object perception and counting of region-level targets
across dynamic image sequences. We assess nine core object attributes (i.e., category, color, material, shape,
state, position, function, surface detail, and size)—plus a distinct object counting capability. Models are
required to provide responses conditioned on questions with precise spatio-temporal positions (i.e., frame
index and spatial coordinates). Evaluation Metrics: During evaluation, responses are scored by GPT-4o on a
scale from 0 to 1, utilizing either a binary scheme or a multi-level system with 0.2-point increments.

Spatial Cognition requires models to derive 3D spatial awareness from egocentric video streams, spanning two
primary perspectives: Ego-centric and World-centric. While ego-centric cognition examines the embodied
agent’s evolving relationship (e.g., rotation, direction) with the environment over time, world-centric cognition
evaluates the comprehension of objective 3D layouts and physical properties, such as size scale, distance,
and position. Evaluation Metrics: For numerical questions, we apply mean relative accuracy (MRA) and
rotational accuracy (RoA) to measure the score following RynnEC [24]. For textual questions, we use the
binary or fine-grained scores from GPT-4o as described above.

Grounding evaluates the capability for precise spatio-temporal localization, representing a key link for anchoring
understanding in reality. This task requires the brain model to (1) pinpoint the critical temporal key frame and
then (2) predict the object’s spatial coordinates within that frame. We distinguish between Direct Grounding,
which involves locating objects based on explicit descriptions, and Situational Grounding, which necessitates
context-aware reasoning to identify and localize targets within complex scenarios. Evaluation Metrics: We
apply the Acc@0.5 to calculate the score [45]. Specifically, the prediction is considered correct only if the
model selects a frame t that contains a valid ground truth (Gt ̸= ∅) and the Intersection over Union (IoU)
between the predicted box B and Gt exceeds 0.5. Let I(·) be the indicator function, the metric is:

Acc@0.5 = I (Gt ̸= ∅ ∧ IoU(B,Gt) > 0.5) (11)

Pointing aims to predict target areas, spatio-temporal trajectories, or affordance points across the entire
episodic memory, serving as a critical bridge for robot-physical world interaction. Departing from previous
benchmarks, we extend the evaluation scope to the spatio-temporal domain, where models must demonstrate
the dual capacity to locate the key frame and predict corresponding task-relevant point sequences. Evaluation
Metrics: For pointing tasks, the score is set to zero if the model-predicted frame does not contain a valid
ground truth (Gt = ∅). Otherwise, (1) For trajectory prediction, we apply the Discrete Fréchet Distance
(DFD) distance [43] between the predicted point sequence P = (p1, . . . , pM ) and the ground truth sequence
G = (g1, . . . , gN ). We resample both sequences to 15 points uniformly distributed along the arc length and
compute the DFD according to Equation 7. (2) For area prediction, we calculate the proportion of predicted
points P falling within the ground truth polygon SG according to Equation 9. (3) For affordance prediction,
we evaluate spatial proximity using the exponential decay of the Euclidean distance from each predicted point
p ∈ P to its nearest neighbor in the ground-truth set G:

D(P,G) = exp(− 1

|P|
∑
p∈P

min
g∈G
∥p− g∥2) (12)

6.2 Embodied Cognition Capability

To assess RynnBrain’s embodied cognition capabilities, we evaluate it on a diverse suite of benchmarks,
including VSI-Bench [105], MMSI [107], ERQA [94], RoboSpatial [90], EgoTaskQA [44], EgoTextVQA [124],
Open-X VQA [13], MindCube [109], RynnBrain-Object and RynnBrain-Spatial. As shown in Table 3, our
RynnBrain-8B outperform the base model Qwen3-VL-8B on 9 of 11 embodied cognition tasks. RynnBrain-8B
delivers substantial gains across a variety of tasks. For instance, on the spatial reasoning benchmark VSI-
Bench, RynnBrain-8B achieves 71.0 score, surpassing the previous best result of 60.3, and on RoboSpatial it
exceeds the previous top-performing method by 11.3%. RynnBrain-8B also attains strong performance on
RynnBrain-Object and RynnBrain-Spatial, indicating robust improvements in object-centric and spatially
grounded reasoning. Similarly, we evaluate RynnBrain-30B (A3B) model on various embodied cognition
benchmarks, with results summarized in Table 4. From the table, it is clear that RynnBrain-30B (A3B)



O
b
ject

Cognition

Localization

Gro
un

di
ng

Pointing

D
ir

ec
t

Gr
ou

nd
in

g

A
reaS

pa
ti

al

Co
gn

itio
n

Trajectory Affordance

Situatio
na

l

Grounding

O
b
ject

Properties

ObjectCounting

Ego-
Centric

W
or

ld
-C

en
tr

ic

RynnBrain
Bench

World-Centric

Ego-Centric

Trajectory

Affordance

Direct Grounding

Situational Grounding

Object Properties

Object Counting

Area

Q1: What material is the <object> 

<frame0>; (0, 290), (290, 630) 

</object> likely made of?

There are 2 objects: <object1> (<object>…) 

<object2> (<object>…).

Q2: What is the separation between 

the <object1> and <object2>?

A: 0.4 meters

A: <object1>

2

Q2: How many chairs around the <object> 

<frame3>; (0, 430), (230, 810) </object>?”

A: The object appears to be made of 

painted wood

A: 2

1

Q1: Detect the beige ceramic mug 

with a handle on the table in this video.

Q2: If I need to store leftover fruit, which 

appliance should I use?

A: <frame 3>; (460, 710), (520, 820)

A: <frame 0>; (190, 0), (390, 920)

Q1: Transfer the bag from the 

chair to the top of the white shelf.

Q3: Identify an unoccupied 

section on the table.

Q2: Pull out the chair from 

under the table.

A: <frame ID>; (x1,y1), (x2,y2) …

Co
gn

it
io

n

Q1: Which one is nearer to you?

Q1
Q2

A1

A2

A3

A1 A1

A2

Figure 4 Overview of evaluation dimensions in RynnBrain-Bench. RynnBrain-Bench includes two subsets: cognition
and location, evaluating a total of 21 spatio-temporal fine-grained embodied abilities.

outperforms prior models on most benchmarks. Notably, on VSI-Bench it improves over the previous best
by 8.7%, on EgoTaskQA it yields a 10.5% gain, on Open-X VQA it surpasses prior methods by 6.6%, on
RynnBrain-Object it improves by 20.2%, and on RynnBrain-Spatial it achieves a 25.1% gain. These results
collectively demonstrate RynnBrain’s strong ability to perform embodied cognition and spatial reasoning
across diverse tasks and environments.

6.3 Embodied Location Capability

We evaluate RynnBrain’s spatial grounding abilities across five key location tasks: object location, area
location, affordance location, trajectory location, and grasp pose location. Our models are benchmarked against
state-of-the-art methods on public benchmarks including RefSpatial-Bench [122], ShareRobot-Affordance [43],
ShareRobot-Trajectory [43], Cornell-Grasp [19], and VMRD-Grasp [115]. As shown in Table 3, RynnBrain-8B
achieves leading performance across all location benchmarks except ShareRobot-Trajectory, where RynnBrain-
2B performs best. On RefSpatial-Bench, it achieves 59.2, surpassing the base model (Qwen3-VL) by 5.8%. It
attains 44.7 on ShareRobot-Affordance, outperforming the closest competitor by 7.7%. For grasp pose location,
RynnBrain-8B achieves 26.6 on Cornell-Grasp and 14.1 on VMRD-Grasp, significantly exceeding other 8B-scale
models. Moreover, on our internal RynnBrain-Grounding and RynnBrain-Affordance benchmarks, RynnBrain-
8B reaches 81.6 and 90.4, respectively, demonstrating its strong capability in precise spatio-temporal joint
localization. The advantages are kept at the 30B (A3B) scale ( Table 4). It achieves the best results
on Cornell-Grasp (33.6), VMRD-Grasp (14.5), RynnBrain-Grounding (83.9), and RynnBrain-Affordance
(90.5). Moreover, RynnBrain-30B (A3B) significantly outperforms all other models of the same scale on
RefSpatial-Bench, RynnBrain-Area, and RynnBrain-Trajectory, approaching the performance of the much
larger Gemini 3 Pro. These results demonstrate RynnBrain’s strong spatial grounding capabilities across
multiple embodied location tasks and model scales.

6.4 General Visual Understanding

We further evaluate the general visual understanding ability of RynnBrain to assess its overall generality
and generalization. To cover both static images and dynamic videos, we benchmark RynnBrain on a suite of
general VQA datasets, including image-based AI2D [46], ChartQA [65], DocVQA [66], RealWorldQA [102],
and InfoVQA [67], as well as video-based MVBench [53], EgoSchema [63], and VideoMME [32]. As shown in



Table 3 Comparison between models with parameter scales below 8B. * denotes results obtained from our own
reproduction.

Benchmark

Model RynnBrain RynnBrain MiMo-
Embodied RoboBrain 2.0 Pelican-VL Cosmos-reason2 Qwen3-VL

2B 8B 7B 7B 7B 8B 8B

Embodied
Cognition

VSI-Bench 70.5 71.0 48.5 36.1 52.8 53.7* 60.3

MMSI 34.1 39.6 30.2* 24.8* 26.2* 31.3* 29.6

ERQA 42.3 46.8 46.8 36.5* 39.8* 46.0* 44.8

RoboSpatial 65.7 73.1 61.8 54.2 57.5 59.0* 58.2

EgoTaskQA 73.9 72.5 58.7* 51.1* 50.0* 55.7* 57.8

EgoTextVQAindoor 27.7/2.08 31.6/2.28 28.7/2.17* 22.0/1.79* 30.3/2.24* 26.5/1.96* 38.9/2.64*

Open-X VQA 71.0 74.0 41.5* 44.6 44.1* 55.0* 59.8

QAEgo4D 43.9 43.9 39.0* 39.7* 26.1* 46.9* 44.0

MindCube 50.1 56.6 43.1* 38.9 33.7* 43.9* 36.0

RynnBrain-Object 70.7 71.2 39.0 24.7 30.8 37.2 41.8

RynnBrain-Spatial 57.2 59.9 28.3 13.5 20.5 31.4 35.0

Embodied
Location

RefSpatial-Bench 52.7 59.2 48.0 32.5 22.3 33.1* 53.4

ShareRobot-Affordance 43.3 44.7 35.8* 28.1 11.3 37.1* 37.0

ShareRobot-Trajectory ↓ 0.34 0.35 0.41* 0.55 0.42* 0.36* 0.37

Cornell-Grasp 20.9 26.6 0.2* 0.0* 0.0* 18.1* 21.2*

VMRD-Grasp 13.0 14.1 2.8* 0.5* 0.0* 13.7* 7.1*

RynnBrain-Grounding 79.1 81.6 49.8 18.6 3.5 60.0 62.8

RynnBrain-Area 54.6 56.2 49.4 38.0 46.5 37.6 30.0

RynnBrain-Affordance 89.4 90.4 84.4 73.5 81.4 83.9 82.9

RynnBrain-Trajectory 66.6 64.5 61.3 57.6 59.2 64.0 63.4

General Visual
Understanding

AI2D 79.4 86.3 84.2 70.3* 83.8* 83.0* 85.7

ChartQA 78.2 86.5 85.2* 82.4* 87.5* 84.3* 89.6

DocVQAval 93.0 96.2 94.9* 93.1* 94.5* 95.0* 96.4

MVBench 67.3 69.5 57.9* 50.6* 67.7 67.0* 68.7

RealWorldQA 60.4 67.3 66.1* 51.2* 67.1* 69.3* 71.5

InfoVQAtest 71.2 83.4 72.0* 77.6* 81.1* 78.3* 83.1

EgoSchema 64.0 69.7 58.2* 54.2* 73.3 63.5* 69.7

VideoMMEw/o sub 61.4 70.7 65.0* 52.3* 63.3 71.9 71.4

Table 3, RynnBrain maintains the general visual understanding performance of the base model Qwen3-VL
on both images and videos, and notably achieves state-of-the-art results on AI2D, MVBench, and InfoVQA,
demonstrating the effectiveness of our training strategy. Table 4 shows consistent trends for the 30B models,
confirming that RynnBrain provides strong general visual capability alongside its embodied cognition strengths.
This generalization advantage enables RynnBrain to serve as a central component of an embodied agent
system, accommodating diverse task requirements.

6.5 Physically Grounded Reasoning

To rigorously evaluate the physically grounded reasoning capabilities of our model, we conducted a comparative
analysis of RynnBrain-CoP-8B against several state-of-the-art multimodal baselines. The comparison includes
leading open-source models such as InternVL3.5-8B [97], MiMo-Embodied-7B [37], and Qwen3-VL [6] (8B and
30B variants), alongside powerful proprietary models like GPT-5.2 and Gemini-3-Pro. Our evaluation focuses
on three core embodied tasks—affordance prediction, area prediction, and trajectory prediction—which require
the model to ground complex spatial intent into precise coordinates.

As shown in Table 5, RynnBrain-CoP-8B achieves superior performance across all evaluated metrics, setting
a new state-of-the-art for embodied reasoning. On average, our 8B model attains a score of 73.8, surpassing



Table 4 Comparison between models with parameter scales above 30B. * denotes results obtained from our own
reproduction.

Benchmark

Model RynnBrain RoboBrain 2.0 Pelican-VL GPT-5.2 Gemini 3 Pro Claude Sonnet 4.5 Qwen3-VL

30B (A3B) 32B 72B - - - 30B (A3B)

Embodied
Cognition

VSI-Bench 74.5 42.7 57.3 46.6* 48.8* 42.5* 65.8

MMSI 39.5 28.5* 30.7* 38.2* 49.2 28.9* 21.1

ERQA 46.3 46.0 43.0 45.3* 70.5 60.0 43.0

RoboSpatial 70.0 72.4 55.4 54.7* 56.0* 40.9* 55.4

EgoTaskQA 78.9 59.9* 64.8* 59.6* 68.4* 50.9* 64.2*

EgoTextVQAindoor 34.6/2.39 30.5/2.24* 37.8/2.59* 49.6/3.02* 45.5/2.87* 36.6/2.55* 41.3/2.74*

Open-X VQA 83.4 28.6* 48.0* 43.6* 56.0* 41.9* 76.8*

QAEgo4D 47.3 40.3* 24.6* 46.8* 42.1* 35.0* 47.3*

MindCube 63.4 29.2 32.5* 61.7 70.8 58.3 39.0*

RynnBrain-Object 73.3 26.2 42.2 53.1 44.6 25.1 42.6

RynnBrain-Spatial 59.3 11.6 32.2 33.7 29.0 34.2 30.7

Embodied
Location

RefSpatial-Bench 59.2 54.0 49.5 26.4* 65.5 15.1 53.1

ShareRobot-Affordance 43.2 35.3 10.4* 17.5* 26.9* 13.9 47.2*

ShareRobot-Trajectory ↓ 0.31 0.24 0.36* 0.35* 0.29* 0.57 0.36*

Cornell-Grasp 33.6 0.3* 0.0* 14.5* 33.2* 0.0* 29.9*

VMRD-Grasp 14.5 0.7* 0.0* 6.2* 10.9* 4.8* 8.0*

RynnBrain-Grounding 83.9 0.0 10.8 11.2 59.2 0.0 76.4

RynnBrain-Area 59.4 45.3 53.2 35.8 61.5 10.1 30.9

RynnBrain-Affordance 90.5 76.1 87.3 83.3 86.0 48.7 86.2

RynnBrain-Trajectory 66.8 60.3 64.1 70.5 72.0 54.6 61.2

General
Visual
Understand

AI2D 87.0 67.3* 86.7 97.1 98.7 91.5 85.0

ChartQA 88.3 82.4* 90.4* 89.6 93.7 88.1 83.7*

DocVQA 96.3 90.2* 95.2* 94.2 87.1 91.7 95.0

MVBench 70.8 57.1* 69.7 67.1* 71.5* 55.1* 72.3

RealworldQA 69.7 67.5* 67.3* 82.5* 73.6* 68.1 73.7

InfoVQAtest 83.1 75.5* 89.1* 66.8* 83.1* 62.2* 82.0

EgoSchema 66.8 61.3* 79.3 81.2* 72.2* 67.2* 70.7

VideoMMEw/o sub 71.9 55.6* 73.7* 84.7 88.6 68.6* 74.5

the strongest proprietary competitor, MiMo-Embodied-7B (65.8) and Gemini-3-Pro (65.1), by a substantial
margin. Notably, it outperforms the much larger RoboBrain2.0-32B (57.7) by 16.1%, demonstrating that our
reasoning architecture is more effective than simple parameter scaling for spatial tasks.

The task-specific results further highlight the model’s precision:

• Affordance Prediction: RynnBrain-CoP-8B achieves a peak accuracy of 90.3, being the only model
to break the 90 threshold. This suggests that the physically grounded CoT effectively narrows down
actionable zones.

• Area Prediction: While this remains the most challenging task for all baselines (with many scoring below
40), our model reaches 59.6, outperforming Gemini-3-Pro (50.7) and nearly doubling the performance of
Qwen3-VL-30B (33.0).

• Trajectory Prediction: Our model leads with 71.2, showcasing a superior understanding of temporal-
spatial sequences compared to GPT-5.2 (70.5) and InternVL3.5 (47.8).

These results validate that despite its compact 8B parameter size, RynnBrain-CoP-8B delivers consistently
more accurate spatial grounding. The significant gains, particularly in complex area and trajectory tasks,



Table 5 Comparison RynnBrain-CoP with state-of-the-art thinking models on embodied reasoning tasks. All compared
models are evaluated with the thinking mode enabled. We evaluate models on affordance prediction, area prediction,
and trajectory prediction. Average denotes the mean across the three tasks. Best results are highlighted.

Model Task
Affordance Area Trajectory Average

InternVL3.5-8B [97] 63.1 9.2 47.8 40.0
MiMo-Embodied-7B [37] 85.3 47.1 64.9 65.8
RoboBrain2.0-7B [92] 65.3 38.0 58.5 53.9
RoboBrain2.0-32B [92] 73.2 39.5 60.5 57.7
Qwen3-VL-8B-Thinking [6] 56.7 20.4 46.9 41.3
Qwen3-VL-30B-A3B-Thinking [6] 62.2 33.0 54.8 50.0
GPT-5.2 [89] 83.3 35.8 70.5 63.2
Gemini-3-Pro 83.9 50.7 60.6 65.1

RynnBrain-CoP-8B 90.3 59.6 71.2 73.8

Table 6 Comparison RynnBrain-Nav with state-of-the-art navigation models. The best results are highlighted.

Method Observation Encoder R2R Val-Unseen RxR Val-Unseen

Pano. Odo. Depth S.RGB NE↓ OS↑ SR↑ SPL↑ NE↓ SR↑ SPL↑ nDTW↑
VLN⟳BERT* [40] ✓ ✓ ✓ 5.74 53.0 44.0 39.0 8.98 27.0 22.6 46.7
ETPNav* [2] ✓ ✓ ✓ 4.71 65.0 57.0 49.0 5.64 54.7 44.8 61.9
ScaleVLN* [99] ✓ ✓ ✓ 4.80 – 55.0 51.0 - - - -
R2R-CMTP [14] ✓ ✓ ✓ 7.90 38.0 26.4 22.7 - - - -
LAW [80] ✓ ✓ ✓ 6.83 44.0 35.0 31.0 10.90 8.0 8.0 38.0
ETPNav + FF [98] ✓ ✓ ✓ 5.95 55.8 44.9 30.4 8.79 25.5 18.1 -
Seq2Seq [47] ✓ ✓ 7.77 37.0 25.0 22.0 12.10 13.9 11.9 30.8
CMA [47] ✓ ✓ 7.37 40.0 32.0 30.0 - - - -
VLN-R1 [74] ✓ 5.47 49.1 37.4 35.9 - - - -
NaVid [17] ✓ 5.47 49.1 37.4 35.9 - - - -
NaVILA [17] ✓ 5.22 62.5 54.0 49.0 6.77 49.3 44.0 58.5
UniNaVid [116] ✓ 5.58 53.3 47.0 42.7 6.24 48.7 40.9 -
StreamVLN [100] ✓ 4.98 64.2 56.9 51.9 6.22 52.9 46.0 61.9

RynnBrain-Nav-8B ✓ 4.92 71.6 58.6 49.6 6.20 56.1 49.6 59.6

prove that interleaving multi-step reasoning thoughts with visual coordinates is a more data-efficient and
hallucination-resistant paradigm for embodied agents than traditional purely text-based reasoning paradigm.

6.6 Vision-Language Navigation

Benchmarks andMetrics. We evaluate our finetuned model on two public VLN-CE benchmarks [47]: R2R-
CE [4] and RxR-CE [50], which simulate continuous navigation in photorealistic Matterport3D scenes using
the Habitat simulator. To assess generalization to novel environments, all experiments are conducted on the
validation unseen splits. Following standard protocols, we report performance using metrics for task completion
(Success Rate, SR), path efficiency (Success-weighted by Path Length, SPL), and path fidelity (normalized
Dynamic Time Warping, nDTW). The nDTW metric, specifically, leverages the ground-truth trajectories to
evaluate how closely the agent’s path follows the reference instruction. We also include Navigation Error (NE)
and Oracle Success Rate (OS) for a comprehensive analysis.

Comparision wth State-of-The-Art. Table 6 summarizes the performance of our method on the VLN-CE R2R
and RxR benchmarks under the Val-Unseen setting, compared with existing SOTA methods. For the R2R-CE
benchmark, the RynnBrain-Nav-8B model demonstrates highly competitive performance even compared to
methods utilizing multiple input types like panoramic views and odometry. Achieving a top-ranked SR of 58.6%
and the second-best SPL of 49.6% and the lowest NE of 4.92. Noticing that our model’s OS reaching 71.6%
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Figure 5 Compare the differences in the ability of Qwen3-VL and RynnBrain as the base model to finetune navigation
models under multiple model scales. All results are reported without performing multiple rounds of DAgger.

exceeds all competitors, including topological prediction methods that utilize panoramic observations. This
contrast between our high OS and lower SR indicates that our model is proficient at coarse-level navigation
but lacks the precision for the terminal stopping maneuver, thereby failing the overall task.

The model’s navigation capability is further validated on the more demanding RxR benchmark. Here,
RynnBrain-Nav-8B again secures a top-ranked SR of 56.1% and the lowest NE of 4.92, highlighting its superior
capability in complex, long-horizon navigation tasks.

Ablation Study on Pre-training Efficacy. To isolate and evaluate the contribution of our pretraining, we conduct
a comparative analysis between RynnBrain and its Qwen3-VL [6] baseline. Models of varying scales from
both families are fine-tuned on the same sample of datasets (R2R, RxR, EnvDrop, ScaleVLN), and their
performance is evaluated on the R2R-CE benchmark. The results, shown in Figure 5, demonstrate the benefit
of the RynnBrain pretraining. RynnBrain-Nav demonstrates clear performance superiority over the Qwen3-VL
counterpart, achieving consistently higher SR and SPL scores across all evaluated scales. Notably, our 2B
RynnBrain-Nav model surpasses its 2B Qwen3-VL counterpart by a substantial 7.2% in SR and 7.6% in SPL,
affirming the clear efficacy of our pretraining approach.

Impact ofModel Scale and Architecture. Our analysis reveals a clear scaling trend for dense architectures. As
shown in Figure 5, both RynnBrain-Nav and Qwen3-VL demonstrate improved SR and SPL when scaling
from 2B to 8B parameters. However, this positive scaling did not extend to the Mixture-of-Experts (MoE)
architecture. Despite its larger total parameter count, the 30B MoE model (3B active) failed to outperform
the 8B dense models during initial training phases. This suggests that the sparse activation mechanism of
MoE may not be fully leveraged by the Visual Language Navigation (VLN) task, or that alternative training
strategies are required to unlock its scaling potential.

Multi-Turn DAgger Training. To further enhance navigation performance, we employ multi-turn DAgger [82]
training. After initial SFT, the agent collects new trajectories from the R2R, RxR, and EnvDrop environments.
This data is then combined with the original datasets to retrain the model. This iterative process proved
highly effective, particularly in the initial rounds: the Success Rate (SR) increased from a 50.6% baseline to
56.4% after the first iteration and further to 58.5% after the second. However, the third DAgger iteration
yielded only a marginal improvement, indicating a clear trend of diminishing returns as the agent’s policy
converges.

6.7 Planning andManipulation

We develop a three-stage evaluation system to rigorously assess the hierarchical manipulation system based on
RynnBrain. In the first setting, we evaluate the planning logic in isolation: our model serves as the high-level
planner, while a human operator equipped with a Universal Manipulation Interface (UMI) [18] acts as a
fully reliable low-level controller. In the second setting, we design three real-robot experiments in complex,
multi-objective scenarios to validate the precise manipulation capabilities of RynnBrain-VLA. In the third
setting, we assess end-to-end autonomy by deploying the integrated system on a Franka robot. Throughout
the entire system, RynnBrain-Plan is responsible for comprehending the scene and high-level tasks and then
generating sub-tasks with precise coordinates. RynnBrain-VLA accepts sub-tasks and controls the robot arm



Figure 6 Comparison to other VLMs. RynnBrain-Plan-30B outperforms other methods on almost all the settings,
except for the medium difficulty of Distribute Tableware. The metric is Task Process (TP ↑).

to perform the low-level tasks.

6.7.1 RynnBrain and UMI Hierarchical Evaluation

Experimental settings. We designed four long-horizon planning tasks: Object Classification, Desk Organization,
Distribute Tableware, and Table Bussing. Among them, the first three are in-distribution tasks, whereas the
last one is an out-of-distribution task. To assess performance across varying degrees of complexity, all tasks are
stratified into three difficulty levels: Easy, Medium, and Hard. As the difficulty level increases, both the scene
complexity and the instruction complexity rise accordingly. For the fine-tuning phase, we collected 100 expert
demonstrations for each of the in-distribution tasks. Detailed descriptions and specifications for each task are
provided in the Appendix. We benchmark our method, RynnBrain-Plan, against two state-of-the-art baselines:
Gemini-3 Pro, and Qwen3-VL 30B. To mitigate randomness, each task–model evaluation is repeated five times
and we report the average results. Following the protocol established in [87], we adopt Task Progress—defined
as the percentage of subtasks successfully completed by the end of the episode—as our primary evaluation
metric. To guarantee reliability and consistency, all assessments are conducted by trained human annotators.

ComparisononIDTasks. As quantitatively illustrated in Figure 6, our Rynnbrain-Plan demonstrates a significant
performance advantage over state-of-the-art baselines across varying difficulty levels. In the in-distribution
tasks (Object Classification, Desk Organization, and Distribute Tableware), our Rynnbrain-Plan-30B-A3B
consistently achieves superior task progress. This advantage is particularly pronounced in the “Hard” difficulty
settings, which require complex long-horizon reasoning. For instance, in the Desk Organization task (Hard),
while Qwen3-VL and Gemini-3 Pro fail to make meaningful progress (near 0% completion), our 30B model
maintains a robust completion rate of over 75%. While Gemini 3 Pro shows competitive performance in
simpler scenarios (e.g., Distribute Tableware - Medium), it suffers from severe performance degradation as
task complexity increases. The Rynnbrain-Plan 8B model also delivers strong results in “Easy” and “Medium”
settings, often surpassing the significantly larger Qwen3-VL 30B, highlighting the efficiency of our data
construction strategy.

Generalization Analysis on OOD Tasks. The results on the out-of-distribution (OOD) task, Table Bussing,
highlight the exceptional generalization capabilities of our approach. Despite not being exposed to this specific
task during fine-tuning, Rynnbrain-Plan 30B (A3B) achieves remarkable success, reaching near 100% task
progress across all difficulty levels. This stands in stark contrast to the baselines; for example, in the “Hard”
setting of Table Bussing, Qwen3-VL completely fails (< 10%), and Gemini-3 Pro achieves only moderate
success (∼ 60%). Crucially, comparing our two model variants reveals that while the 8B model generalizes well
in simple OOD scenarios, the larger 30B model possesses the emergent capacity to handle complex, unseen
constraints, effectively bridging the gap between in-domain planning and open-world adaptability.

Ablation Study. To rigorously validate the effectiveness of fine-tuning with multi-turn dialogue data, we



Table 7 Ablation on multi-turn dialogue data. Training with single-turn dialogue and multi-turn dialogue data is short
for ST and MT. The metric is Task Process (TP ↑).

Method Object Classification Desk Organization Distribute Tableware Table Bussing

Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard

RynnBrain-Plan-ST 8B 72 20 0 60 0 0 34 0 0 90 0 0
RynnBrain-Plan-ST 30B 75 30 0 58 10 0 28 0 0 95 0 0

RynnBrain-Plan-MT 8B 100 100 75 100 41 55 92 61 78 100 71 30
RynnBrain-Plan-MT 30B 85 91 62 84 92 75 95 62 75 100 90 100

Figure 7 Tasks for VLA evaluation.

conducted an ablation experiment by training a variant of RynnBrain-Plan exclusively on single-turn dialogue
samples. As presented in the Table 7, the performance of this single-turn baseline degrades significantly. It
only manages to complete tasks in the “Easy” difficulty setting, yet even in these simple scenarios, the success
rate remains prohibitively low. This sharp decline underscores the necessity of temporal context: without the
multi-turn interaction history, the model struggles to maintain state consistency over time. In contrast, the
model fine-tuned on multi-turn data effectively leverages historical actions to ground its reasoning, leading to
substantially more accurate and coherent action predictions.

6.7.2 VLA Evaluation.

We benchmark RynnBrain-VLA in three multi-object scenarios to evaluate its object manipulation capabilities.
As illustrated in Figure 7, the experimental setup includes two fundamental tasks featuring four manipulable
objects from two categories (with one category dominant), and a more challenging task involving six objects
with a balanced category distribution. Each model was tested over ten trials per task, with object arrangements
and target selections randomized for each run. To provide a comprehensive analysis, we employed three
evaluation metrics: (1) Pickup Success Rate (PSR): The percentage of trials where any object was successfully
grasped, regardless of its identity. (2) Recognition Success Rate (RSR): The accuracy in identifying the
target object, defined by whether the gripper makes initial contact with the correct item. (3) Success Rate
(SR): The overall rate of successfully picking up the designated target object. For comparative analysis, we
fine-tuned two baseline models: (1) π-0.5 [9]: In order to enable it to manipulate specific objects, we adapted
its input by appending the initial task frame and employing a consistent text format as RynnBrain-VLA.
(2) Qwen3-VL [6]: This model was fine-tuned using the same architectural configuration and data format as
RynnBrain-VLA to ensure a fair comparison.

As indicated in Table 8, the general VLA π-0.5 struggles to identify target objects, resulting in a low RSR.
This performance bottleneck stems from the limited capacity for fine-grained image-text alignment. In
contrast, while Qwen3-VL-Finetuned is derived directly from a general VLM, RynnBrain-VLA achieves
superior localization accuracy and higher grasping success rates. We attribute this advantage to our extensive
pretraining on embodied pointing tasks. Overall, RynnBrain-VLA demonstrates significantly improved success
rates, notably without necessitating extensive pretraining on specific action modalities.

6.7.3 RynnBrain and VLAHierarchical Evaluation

To validate the long-horizon planning and manipulation capabilities of our proposed framework, we integrate
RynnBrain-Plan with RynnBrain-VLA to construct a hierarchical manipulation system. In this architecture,
RynnBrain-Plan functions as the high-level planner, decomposing complex instructions into executable



Table 8 VLA evaluation results.

Method
Pick up bread Pick up bowl Mixed Overall

PSR RSR SR PSR RSR SR PSR RSR SR PSR RSR SR
π0.5-Finetuned 0.7 0.6 0.5 0.8 0.5 0.5 0.5 0.6 0.4 0.67 0.57 0.47
Qwen3-VL-Finetuned 0.7 1.0 0.7 0.5 1.0 0.5 0.6 1.0 0.6 0.60 1.00 0.60
RynnBrain-VLA 0.8 1.0 0.8 0.7 1.0 0.7 0.9 0.9 0.8 0.8 0.97 0.77

subtasks, while RynnBrain-VLA acts as the low-level controller, generating precise robot action commands.
As illustrated in the qualitative results provided in the Figure 8, these two modules are effectively integrated,
demonstrating robust performance in completing long-horizon manipulation tasks. We also evaluate a
comparative setup in which Gemini generates purely textual plans that are subsequently executed by π0.5.
This paradigm often leads to grasping and placement mismatches in tasks involving multiple identical objects
or requiring precise placement. This clearly demonstrates the significance of our physical-aware planning
mode in complex scenarios and intricate operational tasks.

Figure 8 Planning Manipulation Video Examples of RynnBrain-Plan. An example of the RynnBrain-Plan model on a
multi-step online planning task. The executor is RynnBrain-VLA.

7 Conclusion and FutureWorks

In this study, we introduce RynnBrain, a suite of advanced embodied foundation models. RynnBrain expands
the capability frontier of embodied foundation models along four axes: egocentric cognition, spatio-temporal
localization, physically grounded reasoning, and physics-aware planning. Across a comprehensive evaluation on
28 benchmarks, RynnBrain consistently emerges—at all model scales—as a highly capable and well-rounded
open embodied foundation model. Building on the RynnBrain foundation models, we further post-train
four specialized variants—RynnBrain-CoP, RynnBrain-Nav, RynnBrain-Plan, and RynnBrain-VLA—each
achieving state-of-the-art performance in its respective domain and collectively demonstrating the substantial
value of RynnBrain pretraining for a wide range of embodied tasks. Beyond model development, we introduce
RynnBrain-Bench, a high-dimensional evaluation suite designed to rigorously assess fine-grained spatio-
temporal cognition and localization in embodied settings. RynnBrain-Bench advances existing benchmarks
by emphasizing video understanding across episodes, precise spatio-temporal grounding, and physically
meaningful pointing behaviors, providing a more faithful measure of embodied reasoning capabilities in
real-world environments.

Looking forward, we view RynnBrain as a key engine for advancing multimodal foundation models into the
physical world. Future embodied intelligence systems will likely comprise a holistic agent stack, including
components such as a brain, cerebellum, memory modules, and a sensorimotor interface. RynnBrain is
positioned to serve as a core foundation of this agent system, enabling efficient exploration, autonomous
decision-making, and dynamic interaction in complex physical environments. By openly releasing the full



model family under the Apache 2.0 license, we hope to empower the community to address broader embodied
scenarios with RynnBrain and accelerate progress toward general embodied intelligence.
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B Qualitative Examples

This section presents an extensive set of visual examples to demonstrate RynnBrain’s robust capabilities
across a wide range of embodied tasks.

B.1 Examples for Embodied Cognition

As shown in Figure 9 and Figure 10, our RynnBrain supports a wide range of embodied cognition abilities,
including estimating object size and distance, reasoning about relative directions and object counts, performing
fine-grained grounded object-centric understanding and OCR-based perception, and conducting higher-level
spatial reasoning over egocentric views and 3D shapes.

B.2 Examples for Embodied Location

As illustrated in Figure 11 and Figure 12, our RynnBrain demonstrates robust embodied location understanding
by accurately interpreting spatial references in egocentric views and grounding natural language instructions
to precise physical coordinates. It can localize objects based on relative positions, identify graspable items via
functional cues, and generate complex spatial trajectories such as moving or cleaning specified regions.

B.3 Examples for General Visual Understanding

As illustrated in Figure 13, RynnBrain also demonstrates strong general visual understanding abilities,
including video comprehension and image-level understanding of structured content such as charts and
documents.

B.4 Examples for physically Grounded Reasoning

As illustrated in Figure 14, RynnBrain-CoP demonstrates physically grounded reasoning capabilities.

B.5 Examples for Navigation

As illustrated in Figure 15, Figure 16 and Figure 17, RynnBrain-Plan demonstrates robust long-horizon
navigation planning capabilities.

B.6 Examples for Manipulation Planning

As illustrated in Figure 18, Figure 19 and Figure 20, RynnBrain-Plan demonstrates robust long-horizon
planning capabilities. Furthermore, its precise grounding ability enables our method to handle a wide range
of fine-grained manipulation tasks adeptly. The details of each task are as follows:

DistributeTableware. In this task, the planning model is required to distribute tableware for a specified number
of people. The detailed task prompt is provided below.

• Easy: Distribute the tableware on the table among three people.

• Medium: Distribute the tableware on the table among three people, making sure that the cups are on
the right side of each person.

• Hard: Distribute the tableware on the table among four people, making sure that the cups are on the
right side of each person.

Object Classification. In this task, the planning model is required to categorize the food items on the table
and arrange them in a row according to specific instructions. The detailed task prompt is provided below.

• Easy: Sort the fruits on the table and arrange each type of fruit in a row.

• Medium: Sort the fruits on the table into categories and arrange each category in a row, placing them
on either side of the mug.

• Hard: Sort the fruits on the table into categories and arrange each category in a row, placing them on
either side of the mug. Don’t move the fruits in the bowl.



Question: What is the length of the longest 
dimension (length, width, or height) of the door, 
measured in centimeters?
Answer: 192.

Question: Measuring from the closest point of each 
object, what is the distance between the door and 
the telephone (in meters)?
Answer: 3.5.

Question: If I am standing by the window and facing 
the keyboard, is the telephone to my front-left, front-
right, back-left, or back-right?
Answer: front-right.

Question: How many trash bin(s) are in this room?

Answer: 2. Object countingObject size

Object distanceRelative direction

Question: What brand of sponge should I use to 
clean up?
Answer: vileda. OCR

Question: Where do I place the yellow vileda 
sponge?
Answer: on the sink. OCR

Question: Where did I put the steel container?
Answer: On the table.

Ego-centric Understanding

Question: Based on these two views showing the 
same scene: in which direction did I move from the 
first view to the second view? 
Answer: Diagonally forward and right.

Question: Which of these images are different 
perspectives of the same object? A. First and second. B. 
First and third. C. All are the same. D. All are different.
Answer: B. First and third.

Spatial ReasoningSpatial Reasoning

Question: Where did I take the steel container?
Answer: In the cabinet below.

Ego-centric Understanding

Figure 9 Embodied Cognition Examples of RynnBrain. RynnBrain supports diverse embodied cognition tasks, including
spatial understanding of object size, direction, distance, and counting, OCR-based perception, and higher-level spatial
reasoning over egocentric views and 3D shapes.



Question: What degree of clockwise rotation is 
necessary for you to face <object> <frame 82>; 
(359,157),(596,361) </object>?
Answer: About 10 degrees.

Question: What is the function of <object> <frame 
2>; (910,480),(979,596) </object>?
Answer: The object is used to control the computer.

Camera rotation

Object function

Question: There are 3 objects in the video: <object0> <object> <frame0>; (855, 657), (925, 837) </object>, 
<object1> <object> <frame1>; (619, 710), (669, 781) </object>, <object2> <object> <frame4>; (190, 896), 
(284, 977) </object>. Which of the three objects <object0>, <object1>, and <object2> is tallest?
Answer: <object2> is the tallest. Height comparison

Question: What is the distance between <object> <frame0>; (39, 310), (232, 414) </object> and <object> 
<frame2>; (463, 207), (849, 1000) </object>?
Answer: 1.02 meters. Distance estimation

Question: What o’clock is <object> <frame 5>; 
(459,157),(696,661) </object> located with respect 
to your position?
Answer: 10 o'clock position. Direction to camera

Question: What is <object> <frame 5>; 
(459,157),(696,661) </object> made of?
Answer: The object is made of wood and fabric.

Object material

Question: There are 2 objects in the video: <object0> <object> <frame 0>; (786,425),(904,559) </object>, 
<object1> <object> <frame1>; (17,614),(380,974) </object>. Does <object0> have a larger size compared to 
<object1>?
Answer: Actually, <object0> might be smaller than <object1>.

Size comparison

Figure 10 Embodied Cognition Examples of RynnBrain. RynnBrain also supports a diverse range of fine-grained embodied
cognition tasks, including spatial understanding of camera rotation, direction, distance, and size, as well as object
understanding of function and material.



Question: Find the wooden 
cutting board leaning against 
the wall near the sink?
Answer: In frame 5:

Object Location

Question: Find several spots in
the blank area between sink
and metal mixing bowls.
Answer: In frame 6:

Area Location

Question: Hold the copper-
colored frying pan resting in the 
sink.
Answer: In frame 4:

Affordance Location

Question: Move the VR headset
on the black holder to the front
of the sun glasses on the desk.
Answer: Start in frame 3:

Trajectory (Move)

Question: Clean the left area of
the notebook with the cloth
hanging on the right wall.
Answer: Start in frame 7:

Trajectory (Clean)

Question: Open the black
notebook at the middle of the
desk.
Answer: Start in frame 7:

Trajectory (Open/Close)

Question: Identify the fluffy
pink bath cap hanging on the
wall?
Answer: In frame 2:

Object Location

Question: Find some spots in
the unoccupied space on the
edge of the white sink.
Answer: In frame 6:

Area Location

Question: Flip the silver sink
plug in the middle of the white
sink.
Answer: In frame 6:

Affordance Location

Figure 11 Embodied Location Video Examples of RynnBrain. RynnBrain excels at grounded spatial reasoning, supporting
video-based location tasks for object, area, affordance, trajectory. These examples highlight its ability to map linguistic
descriptions to 3D locations and actions in real-world scenes.



Question 1: Identify the grasping coordinates
for the two white skincare bottles.

Question 2: What is the optimal grasping pose
for the bouquet of flowers at the corner of the
TV stand?

Grasp Pose

① ②

Question 1: Open the second yellow cabinet 
door from the right.

Question 2: Close the silver metallic door of the 
bathroom.

Trajectory (Open/Close)

① ②

Question 1: Wipe the black plastic cabinet door 
on the left side of the table with the green cloth 
located on the table's right side.

Question 2: Use the small blue cloth to wipe the 
radiator.

Trajectory (Clean)

① ②

Question 1: Move the black metallic kettle on
the left-side black heat unit .

Question 2: Hang the plastic bag containing the 
pink bunny plush toy on the second left hook on 
the door.

Trajectory (Move)

① ②

Question 1: Click down the C key on the white
electric keyboard.

Question 2: Turn off the lights in the current
room?

Affordance Location

① ②

Question 1: Identify several spots on the
ground between the two sofas.

Question 2: Find several points on the space of
the cloth cover’s surface not occupied by the
cardboard box?

Area Location

① ②

Question 1: Identify the grounding box for the
blue plastic water bottle on the ground behind
the door.

Question 2: Find the AC/DC adapter for the
black notebook.

Object Location

① ②

Figure 12 Embodied Location Image Examples of RynnBrain. RynnBrain excels at grounded spatial reasoning, supporting
image-based location tasks for object, area, affordance, trajectory, and grasp pose. These examples highlight its ability
to map linguistic descriptions to 3D locations and actions in real-world scenes.



Question: Describe the video in detail.

Answer: The video takes place in a forested area, likely during a camping trip or outdoor event. The scene is set with tall 

trees and a ground covered in dirt and patches of grass. Colorful triangular flags are strung between the trees, adding a 

festive atmosphere to the setting. A pink tent is visible in the background, indicating a campsite. The main focus of the video 

is on two individuals, an older person and a younger boy, who are engaged in a playful game of hide-and-seek. The older 

person is wearing a gray puffer vest over a plaid shirt and gray pants, while the younger boy is dressed in a yellow striped 

shirt and denim shorts. They are seen peeking around a large tree, with the older person trying to hide behind it and the boy 

attempting to find them. The interaction between the two is light-hearted and fun, capturing a moment of joy and 

connection in a natural setting.

Video Understanding

Question: What was the global 4G service revenues 
in dollars in 2018?
Answer: 555.

Question: What new generation of mobile 
technology is forecast to gain market revenue in 
the coming years?
Answer: 5G.

Question: What year is the first represented on the 
grid?
Answer: 2010. ChartQA

Question: Please parse all the text in the document.
Answer: COPY 99 WALL STREET NEW YORK 5, N. Y. 
August 1st, 1945 
TO: John C. Geran         FROM: Ody H. Lamborn 
Please let me know when the 50,000 copies of 
"Sugar is the Foundation of All Life" will be ready 
for distribution. 
Towards the bottom of the cover I would like a 
"box", say an inch square, that says inside of it 
"Extra copies of this address will be supplied upon 
request". 
The title on the cover should read: 
SUGAR IS THE FOUNDATION OF ALL LIFE 
(By Dr. Wm. J. Robbins, Director N.Y. Botanical 
Garden, Bronx Park New York) 
OHL:be DocVQA

Figure 13 General Visual UnderstandingExamples ofRynnBrain. RynnBrain also preserves strong general visual understand-
ing capabilities, including video comprehension and image understanding for content such as charts and documents.



Question:  Lift the patterned pillow on the far left of the sofa.

Thinking: I first locate the main object, the [sofa] <area> <frame 7> (940, 939), (559, 612), (806, 808), (530, 681)
</area>, which is the large piece of furniture in the center of the image. Next, I scan the [sofa] <area> <frame
7> (940, 939), (559, 612), (806, 808), (530, 681) </area> to find the target object, a ‘patterned pillow’. I identify

two [patterned pillows] <object> <frame 7> ((213, 185), (480, 489)) </object> with cartoon faces on the [sofa]
<area> <frame 7> (940, 939), (559, 612), (806, 808), (530, 681) </area>. The instruction specifies the one ‘on the

far left’, so I select the [pillow on the far left] <object> <frame 7> ((213, 185), (480, 489)) </object>. The required
action is ‘lift’. To lift a soft object like a pillow, the most effective way is to grasp its main body. Therefore, the
final affordance prediction is placed on the surface of the [patterned pillow on the far left] <object> <frame 7>

((213, 185), (480, 489)) </object>.

Answer: <affordance><frame 7>, (347, 369)</affordance> Affordance Prediction with Thinking

Question:  Move the black chopsticks from the container on the left to the metal rack on the right.

Thinking: First, I must parse the user's instruction. The command is to 'move' the 'black chopsticks' from the
'container on the left' to the 'metal rack on the right’. This requires picking up the specified chopsticks and
placing them in the rack. The starting point of the trajectory is the object being moved, which are the [black

chopsticks] <object> <frame 2> ((81, 352), (206, 470)) </object> located inside the [container on the left] <area>
<frame 2> (129, 491), (154, 550), (154, 516) </area>. The destination is the target location, which is the [metal

rack on the right] <area> <frame 5> (834, 695), (934, 733), (736, 572) </area>. Therefore, the trajectory originates
from the [black chopsticks] <object> <frame 2> ((81, 352), (206, 470)) </object>, moves upwards and to the right,
and terminates on the [metal rack on the right] <area> <frame 5> (834, 695), (934, 733), (736, 572) </area>.

Answer: <trajectory><frame 2>, (258, 404), (306, 354), 
(413, 406), (501, 465)</trajectory> Trajectory Prediction with Thinking

Figure 14 Embodied Location Video Examples of RynnBrain. RynnBrain excels at grounded spatial reasoning, supporting
video-based location tasks for object, area, affordance, trajectory. These examples highlight its ability to map linguistic
descriptions to 3D locations and actions in real-world scenes.



Desk Organization. In this task, the planning model is required to place different types of pens and garbage
into designated locations according to specific requirements. The detailed task prompt is provided below.

• Easy: Tidy up the desktop. Put the thin pens in the pen holder and arrange the thick pens from left to
right in the order of red, and black. Finally, make sure there is no trash on the desktop.

• Medium: Tidy up the desktop. Put the thin pens in the pen holder and arrange the thick pens from left
to right in the order of red, black and blue. Finally, make sure there is no trash or used paper cups on
the table.

• Hard: Tidy up the desktop. Put the thin pens in the pen holder and arrange the thick pens from left to
right in the order of red, black and blue. Finally, make sure there is no trash or used paper cups on the
table.

Table Bussing (OOD). In this task, the planning model is required to generate a detailed action plan in response
to the instruction “Bus the table”. The detailed task setting is provided below.

• Easy: Two forks, two pens, one plate, and one pen holder.

• Medium: Two forks, two pens, two plates, two cups and one pen holder.

• Hard: Two forks, two pens, two plates, two cups, one trash, one trash can and one pen holder.

Figure 15 Visual Language Navigation Video Examples of RynnBrain in Real Environment. Examples of the RynnBrain-Nav
model in a real indoor environment. The results demonstrate the strong navigation ability of the model in the real
environment.



Figure 16 Visual Language Navigation Video Examples of RynnBrain on R2R-CE. Examples of the RynnBrain-Nav model on
R2R-CE. The results demonstrate the strong navigation ability of the model.



Figure 17 Visual Language Navigation Video Examples of RynnBrain on RxR-CE. Examples of the RynnBrain-Nav model on
RxR-CE. The results demonstrate the strong navigation ability of the model.



Figure 18 Planning Manipulation Video Examples of RynnBrain-Plan. An example of the RynnBrain-Plan model on a
one-step offline planning task on the Agibot Dataset.

Figure 19 Planning Manipulation Video Examples of RynnBrain-Plan. An example of the RynnBrain-Plan model on a
multi-step online planning task. The executer is a human expert with a UMI.



Figure 20 Planning Manipulation Video Examples of RynnBrain-Plan. An example of the RynnBrain-Plan model on a
multi-step online planning task. The executer is a human expert with a UMI.



C Prompts Details

C.1 Training QA Prompts

To ensure reproducibility, we list the detailed prompt templates used for each training task in Table 9. All
prompts are presented in a unified Python f-string format.

C.2 Evaluation and Inference Prompts

To ensure reproducibility, we list the detailed prompt templates used for each benchmark in Table 10. All
prompts are presented in a unified Python f-string format.

Table 9 Prompt Templates for Various Training Tasks

Training Task Prompt Template (Unified Format)

Object Understanding f"I’d like to know about the area labeled <object> ({x[0]}, {y[0]}), ({x[1]},
{y[1]}) </object> in the image. Can you give a short description?"

Spatial Understanding f"You are in the last frame of the video. There are {n} objects in the video:
<object{idx}> <object> <frame {frame_id}>: ({x[idx][0]}, {y[idx][0]}),
({x[idx][1]}, {y[idx][1]}) </object>, ... \n{question}"

OCR f"Locate the text "{text}" in this video.\n\nStep 1: Predict the key
frame.\nStep 2: Output a tuple series.\nOutput format: <area> <frame n>:
(x1, y1), (x2, y2), .... </area>\n with all coordinates normalized to 0-1000
range."

Object Location 1. f"{question}\nOutput the bounding box in the format <object> <frame n>:
...; (x1,y1), (x2,y2) </object>. n is the chosen frame index."
2. f"{question}\nGenerate coordinates for one object bounding box.
Constraints: x1,y1,x2,y2 ∈ [0,1000]. Response must be in the format:
<object> (x1, y1), (x2, y2) </object>"

Area Location 1. f"{question}\nFirst perform key frame prediction, then generate a sequence
of coordinate tuples.\nOutput format: <area> <frame n>: ...; (x1, y1), (x2,
y2), .... </area>\n Each coordinate pair must contain normalized pixel values
within the [0, 1000] range."
2. f"{question}\nExpress the coordinates as a tuple sequence in the format
<area> (x1, y1), (x2, y2), ... </area> with all coordinate values normalized
to the standardized pixel coordinate system spanning 0 to 1000."

Affordance Location 1. f"{question}\n1. First identify the key frame\n2. Then predict one
affordance point.\nOutput format: <affordance> <frame n>: ...; (x, y)
</affordance>\nCoordinates normalized to 0-1000 pixel space."
2. f"{question}\nTask: Affordance point prediction\n- Identify one possible
affordance point\n- Normalize coordinates to 0-1000 range\n- Output format:
<affordance> (x, y) </affordance>\n- Example: [450, 320]"

Trajectory Location 1. f"{question}\nor trajectory completion:\n1. First locate the frame
with the trajectory start point\n2. Then predict up to 10 key points as
list. Output format: <trajectory> <frame n>: ...; (x1, y1), (x2, y2), ....
</trajectory>\nAll coordinates normalized to 0-1000 pixel space."
2. f"{question}\nPredict a trajectory comprising up to 10 key points. Return
coordinates in the format <trajectory> (x1, y1), (x2, y2), ... </trajectory>
with all values normalized to the [0, 1000] range."

Continued on next page...
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Training Task Prompt Template (Continued)

Navigation f"You are an autonomous navigation assistant. Your task is to Walk straight,
and when you reach the end of the table turn right. Wait by the brass chairs.
Devise an action sequence to follow the instruction using the four actions:
TURN LEFT, TURN RIGHT, MOVE FORWARD, or STOP."

Planning f"You are a sophisticated dual-arm robot planning the next action for the
goal: {question}. Put the thin pens in the pen holder and arrange the thick
pens from left to right in the order of red, black and blue. Finally, make
sure there is no trash on the desktop..\n\n Adhere to the following output
rules:\n - Rule 1: The response must be a single, complete sentence.\n -
Rule 2: The sentence must embed data by selecting a frame ‘n’ and predicting
integer coordinates within the [0, 1000] range.\n - Rule 3: Data format
within tags must be ‘<tag> <frame n>: (data) </tag>’, where ‘data’ is a
single point for both affordance and area, and two points ‘(min_coord), (max_-
coord)’ for object."

Table 10 Prompt Templates for Various Benchmarks

Benchmark Prompt Template (Unified Format)

VSI-Bench 1. f"{question}\nAnswer with the option’s letter from the given choices
directly."
2. f"{question}\n\nAnswer the question with an exact number, which should be
accurate to at most two decimal places."

MMSI f"{question}"

ERQA f"{question}\nAnswer with the option letter from the given choices directly."

RoboSpatial 1. f"{question}. Pinpoint several points within the vacant space situated to
the left of the vacuum. Your answer should be formatted as a list of tuples,
i.e. [(x1, y1), ...], where each tuple contains the x and y coordinates...
indicating the normalized pixel locations of the points."
2. f"{question} Answer yes or no."

EgoTaskQA f"Select the best answer to the following multiple-choice question based on
the video.\n{question}\nOptions:\n(A) {options[0]}\n(B) {options[1]}\n(C)
{options[2]}\n(D) {options[3]}\n(E) {options[4]}\nAnswer with the option’s
letter from the given choices directly and only give the best option. The
best answer is: "

EgoTextVQA_indoor f"You are a person in the situation shown in the following consecutive
images... Answer the question as detailed as possible, covering all relevant
aspects and providing comprehensive context.\n\nQuestion: {question}"

Open-X VQA f"Select the best answer to the following multiple-choice question based
on the image.\n{question}\nOptions:\n{opts_text}\nAnswer with the option’s
letter from the given choices directly and only give the best option. The
best answer is: "

QAEgo4D f"You are a helpful assistant. Please evaluate the predicted answer based on
the given question. A score of 0 means the answer is completely incorrect...
Output only a single score from the following set: [0, 1, 2, 3, 4, 5].
{question}"

Continued on next page...
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Benchmark Prompt Template (Continued)

MindCube f"Select the best answer to the following multiple-choice question based
on the image.\n{question}\nAnswer with the option’s letter from the given
choices directly and only give the best option. The best answer is: "

RynnBrain-Object f"{question} Your current position is at the last frame of the video."

RynnBrain-Spatial f"{question}"

RefSpatial-Bench f"Locate {object_name} in this image. Output the point coordinates in JSON
format."

ShareRobot-Affordance f"{question}The coordinates should be between 0 and 1000, indicating the
normalized pixel locations of the point."

ShareRobot-Trajectory f"{question}Your answer should be formatted as a list of tuples, i.e. [(x1,
y1), (x2, y2), ...], where each tuple contains the x and y coordinates
of a point. The coordinates should be between 0 and 1000, indicating the
normalized pixel locations of the point."

Cornell-Grasp
VMRD-Grasp f"How should the robot grasp the object? Output the grasping pose as 4

corner points of the gripper rectangle.\n- Format: <grasp pose> (x1, y1),
(x2, y2), (x3, y3), (x4, y4) </grasp pose>\n- All coordinates in range
[0, 1000] (normalized)\n- The 4 corners define the gripper’s position,
orientation, and width"

RynnBrain-Grounding f"{question}. Output the bounding box in the format <object> <frame n>:
...; (x1,y1), (x2,y2) </object>. n is the chosen frame index."

RynnBrain-Area f"{question}. First predict the key frame, then output coordinates as a
series of tuples. \nOutput format: <area> <frame n>: ...; (x1, y1), (x2,
y2), .... </area>\n All coordinates must be normalized between 0 and 1000."

RynnBrain-Affordance f"{question}. First predict the key frame, then output a single affordance
point as coordinates (x, y).\nOutput format: <affordance> <frame n>: ...;
(x, y) </affordance>\n Both x and y values must be normalized between 0 and
1000."

RynnBrain-Trajectory f"{question}. First predict the frame containing the trajectory start point,
then output up to 10 key trajectory points as a list of tuples in the format:
<trajectory> <frame n>: ...; (x1, y1), (x2, y2), .... </trajectory> All
coordinates must be normalized between 0 and 1000."

AI2D f"{question}"

ChartQA f"{question}\nAnswer the question using a single word or phrase."

DocVQA f"{question}\nAnswer the question with a single word or phrase."

MVBench f"Question: {question}\nOptions:\n{option_string}Answer with the option’s
letter from the given choices directly and only give the best option."

RealworldQA f"{question}"

InfoVQA_test f"{question}\nAnswer the question with a single word or phrase."

Continued on next page...
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Benchmark Prompt Template (Continued)

EgoSchema f"Select the best answer to the following multiple-choice question based on
the video.\n{question}\nOptions:\n(A) {options[0]}\n(B) {options[1]}\n(C)
{options[2]}\n(D) {options[3]}\n(E) {options[4]}\nAnswer with the option’s
letter from the given choices directly and only give the best option. The
best answer is: "

VideoMME w/o sub f"Select the best answer to the following multiple-choice question based
on the video. Respond with only the letter (A, B, C, or D) of the correct
option.\n {question} "

C.3 Hyper-parameters for Evaluation

To ensure reproducibility, we disabled sampling during autoregressive text generation unless otherwise specified.
For images processing, we constrained the resolution by setting min_pixels to 16× 32× 32 and max_pixels to
16384× 32× 32. For video-related benchmarks, frames are sampled at 2 FPS; if the total exceeds 512 frames,
we apply uniform sampling to maintain a maximum of 512. The min_pixels for each frame and max_pixels
for the whole video are set to 16× 32× 32 and 24576× 32× 32, respectively. On certain pointing-related
benchmarks (e.g., ERQA, RoboSpatial, and ShareRobot), we observed that sampling can further enhance
model performance. In these instances, we set the temperature to 0.2, top_p to 0.95, and top_k to 50.
Additionally, for RefSpatial and ShareRobot—which involve numerous precise positioning tasks—we employed
a higher resolution by increasing min_pixels to 1024× 32× 32.
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